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Outline

Outline:
▶ Huisken’s problem (unsolved): Can a closed planar elastic flow ‘migrate’

from the upper half-plane to the lower half-plane?
▶ Main result: Existence of migrating elastic flows for open planar curves,

analytically and numerically.

References:
▶ Kemmochi–M., Migrating elastic flows, J. Math. Pures Appl. (2024)
▶ M.–Müller–Rupp, Optimal thresholds for preserving embeddedness of

elastic flows, to appear in Amer. J. Math.
▶ M.–Yoshizawa, General rigidity principles for stable and minimal elastic

curves, to appear in J. Reine Angew. Math. (Crelle)
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Elastic flows

Elastic flows:
▶ Gradient flows of the bending energy, penalizing or prescribing length.

▶ Polden (1996), Dziuk–Kuwert–Schätzle (2002), ...

Bending energy:
▶ A quantity that measures how much a curve is bending,

B[γ] :=

∫
γ

k2ds,

where γ is a planar curve and k is the (signed) curvature.
▶ D. Bernoulli (1742), L. Euler (1744), ..., M. Born (1906), ...

▶ A critical point of B under fixed-length constraint, or equivalently of

Eλ := B + λL

(
=

∫
(k2 + λ)ds

)
for some λ ∈ R, is called an elastica.
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Elastic flows

Consider a one-parameter family of planar curves {γ(·, t)}t≥0.

Elastic flow (or length-penalized elastic flow):
▶ L2(ds)-gradient flow of Eλ = B + λL, where λ > 0 is a given constant.
▶ ⇝ 4th order parabolic equation: in terms of normal velocity V ,

V = −2kss − k3 + λk.

Length-preserving elastic flow:
▶ L2(ds)-gradient flow of B under the constraint L[γ(·, t)] = L[γ(·, 0)].
▶ ⇝ the same equation, with the time-dependent nonlocal parameter

λ = λ[γ(·, t)] =

∫
γ(·,t)(2kssk + k4)ds∫

γ(·,t) k
2ds

.
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Positivity breaking

Properties of elastic flows:
▶ Local well-posedness & global existence are well-known.
▶ 4th order⇝ lack of maximum principles⇝ positivity breaking.
▶ Examples of positivity; convexity, embeddedness, graphicality, ...

CSF EF

(2nd order ) (4th orden )③''0
(See e.g. [M.–Müller–Rupp ’24+, Amer. J. Math.])

In this talk we focus on the “half-plane property” explained in the next slide.
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Half-plane property and maximum principle

Half-plane property:
▶ Consider flows of closed curves, initially lying in a half-plane H ⊂ R2.
▶ Curve Shortening Flow (V = k) remains contained in H.
▶ Elastic Flow can protrude from H (lack of maximum principle).

CSF 凸 EF

贓 ゝ

Q B
Q. How much can an elastic flow get out of the half-plane H?
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Huisken’s problem

Huisken’s problem:
Is there a closed planar length-penalized elastic flow γ such that
▶ γ|t=0 ⊂ {y ≥ 0} (contained in the upper half-plane at t = 0) but
▶ γ|t=t0 ⊂ {y ≤ 0} (migrates to the lower half-plane) at some t0 > 0?

Our results:
▶ Existence of migrating elastic flows of open curves, analytically in the

length-preserving case, and numerically in both cases.
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Main result

Elastic flows under the natural boundary condition:
▶ Let γ : [0, 1]× [0,∞) → R2 be an elastic flow of open curves γ(·, t).
▶ Natural BC: γ(0, t) = (0, 0), γ(1, t) = (ℓ, 0), and k(0, t) = k(1, t) = 0.

Theorem (Kemmochi–M. ’24, J. Math. Pures Appl.)

There exists c ∈ (0, 1] such that for any L > 0 and ℓ ∈ (0, cL) there is a
length-preserving elastic flow γ of length L subject to the NBC such that
▶ γ((0, 1)× [0, t0]) ⊂ {y > 0} for some t0 > 0, and
▶ γ((0, 1)× [t1,∞)) ⊂ {y < 0} for some t1 > t0.

Remark
The assumption taking c means that the endpoints are close to each other.
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Numerical example 1: Length-preserving

▶ Numerical example corresponding to our theorem:

▶ Based on [Kemmochi–Miyatake–Sakakibara, arXiv:2208.00675].
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Numerical example 2: Length-preserving

Conjecture:
▶ In the main theorem we can take c = 1 (the endpoints can be distant).
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




Numerical example 3: Length-preserving

Conjecture:
▶ Migration also occurs under (reflection) symmetry.
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}




Numerical example 4: Length-penalized

Conjecture:
▶ Migration also occurs for the length-penalized flow (under NBC).
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




Numerical example 5: Length-penalized

Conjecture (soft statement):
▶ Large λ makes the flow “hard to migrate” (formally, λ = ∞ ⇒ CSF).

▶ This example does not migrate (seen after vertically stretched).
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Numerical example 6: Length-penalized

Conjecture:
▶ Migration occurs both with length-penalization and symmetry.

(Small λ) (Large λ)
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Summary and future directions

Summary:
▶ Existence of migrating elastic flows, in the case of length-preserving and

endpoints close to each other.
▶ The proof is based on the variational structure of stationary solutions.
▶ More examples of migrating elastic flows numerically.

Open problems:
▶ Is there a length-penalized migrating elastic flow? (Numerically exists.)
▶ Is there a symmetric migrating elastic flow? (Numerically exists.)
▶ Is there an embedded migrating elastic flow? (No numerical results.)
▶ The case of closed curves is widely open (including Huisken’s problem).

— Thank you.
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Numerical example: closed curve
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Sketch of proof (1/4)
Key tool is classification of stationary solutions of length L under the NBC.
▶ Global minimizers are convex arcs, unique up to reflection.
▶ All the other solutions are unstable. [M.–Yoshizawa ’24+, Crelle]

3
…

⑨ . .

arc

m.十
[Yoshizawa ’22, DCDS] [M.–Yoshizawa ’24+, IUMJ]
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Sketch of proof (2/4)

If the distance of the endpoints is small, that is, if ℓ ≪ L, then:
▶ The second smallest energy is attained by locally convex loops.

L = L baL
A 2
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Sketch of proof (3/4)

▶ As the loop is unstable, we can find an energy decreasing perturbation.
[M.–Yoshizawa ’24 Crelle]

▶ As the flow decreases energy, the only candidates for the limit shape are
global minimizers; namely, the upper arc and the lower arc.

FCOW ワ
→ Q ⑧

a →PERT
.

員
⑦

→楽
t = 0 t= ∞
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Sketch of proof (4/4)

Consider the total curvature TC[γ] =
∫
γ
k ds. Again if ℓ ≪ L, then:

▶ The minimal bending energy B among all admissible curves γ with
TC[γ] = 0 is strictly larger than the energy of the loop.

▶ That is, ∃ energy-barrier between the upper arc and the upper loop.

ENERGY 7

RBAR IER ?
^

間 a B TCS O
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