The 81st Fujihara seminar 2024.6.3. 16:15-16:35

Quantitative Analysis Around Crystallization Phenomena via Molecular Electron Microscopy

Takayuki NAKAMURO

"Molecular Technology Innovation" Presidential Endowed Chair

The First Movie of a Single Molecule in Motion

Single-Molecule, Atomic-Resolution Time-resolved Electron Microscopy (SMART-EM) or *Cinematic Chemistry*

K. Suenaga, H. Isobe, E. Nakamura et al. Science 2007, 316, 853.

Capturing the Moment of Crystallization

Presented in the pre-symposium

T. Nakamuro *et al. J. Am. Chem. Soc.* **2021**, *143*, 1763.

M. Sakakibara et al. ACS Cent. Sci. 2022, 8, 1704.

Search for Polymorphs Using Nanotest Tube Method

50 fps, EDR of $4.0 \times 10^5 e^{-1}$ nm⁻² s⁻¹, 298 K, vacuum

Structural Analysis of Unknown Polymorph

A. Navrotsky et al., Science 1997, 277, 788.

M. Sakakibara *et al.*, *ChemRxiv* (10.26434/chemrxiv-2024-ms4t7)

(B33 structure at 40 GPa)

Stability of Nanocrystalline Polymorphs Reversed

A. Navrotsky et al., Science 1997, 277, 788.

M. Sakakibara *et al.*, *ChemRxiv* (10.26434/chemrxiv-2024-ms4t7)

CsCl Nucleates as NaCl-type

50 fps, EDR of $3.4 \times 10^{6} e^{-1} nm^{-2} s^{-1}$ 298 K, vacuum

CsCl Nucleates as NaCl-type

Summary of This Topic

- TEM direct imaging of nucleation/growth of nanocrystals enabled the exploration of its mechanism and size dependency in polymorphism.
- Nano-specific polymorphs can give us important insights for designing nanomaterials with unique structures.

Chemical Coating: Unrestricted Observation Space

Analyzed by PXRD and TG-DTA

Insoluble AI(OH)₃ was deposited onto CNTs through hydrolysis & heterogeneous nucleation.

Al₂O₃ Formation under TEM Observation

Polymorphism Is Not *Deterministic* But *Stochastic*

Time-Evolution of Structural Features

Fluxionality Frozen at Low Temperature

Polymorphic Transition by Fast Observations

Fluxionality during Crystallization

M. Sakakibara et al., ChemRxiv (10.26434/chemrxiv-2024-g8tl8)

Fluxionality

V. Fung, D.-e. Jiang, *J. Phys. Chem. C* **2017**, *121*, 10796. Z. Zhang, B. Zandkarimi, A. N. Alexandrova, *Acc. Chem. Res.* **2020**, *53*, 447.

Sub-micrometer: Uniformization of Terrace-Width on CaO

EDR = $6.5 \times 10^7 \text{ e}^- \text{ nm}^{-2} \text{ s}^{-1}$. OneView-IS. 50 fps. Scale bar: 3 nm. After BP filtering. RT.

unpublished

Micrometer: Excitation Causes Molecular Disordering in Lattices by ED

(*f* : structure factor, N_{UC} : number of UCs) \rightarrow TED : total electron dose, N_t : number of ordered molecules

Molecular Disordering Corresponds to Melting in Bulk

1: Adamantane

H-

5: Benzoguinon

, **C**

B: Benzophenone

H₂N ∽

19: Glucose

2: Au (~100 nm)

3H/D: Ice I_t or Ice-D I_h

20: Aquaporin 4

(AOP4)

4: Coronene

(IVR: Intramolecular Vibrational energy Redistribution)

Conclusion & Perspectives

Size Evolution

Establishment of "Cinematic Chemistry" will allow us to experimentally explore the relation between deterministic chemical processes in molecular assembly and the stochastic behavior of individual atoms/molecules.

Acknowledgements

University Prof. Eiichi Nakamura Mr. Masaya Sakakibara (Ph. D. Candidate) Dr. Dongxin Liu Mr. Jiarui Fu Prof. Minoru Hanaya@Gunma U.

Contact: muro@chem.s.u-tokyo.ac.jp