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Summary:
We explan how a unique self-similar solution to the one-phase one-dimensional
Stefan problem attracts all other solutions. The Neumann boundary condi-
tion means energy is pumped into the system.
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I’ll talk about ice melting in a simple one-dimensional one-phase case

ut = uxx {(x, t) : x ∈ (0, s(t)), t ∈ (0, T )} =: ΩT ,
u(s(t), t) = 0, ṡ = −ux(s(t), t) t ∈ (0, T ),
u(x,0) = u0(x), u0(x) ≥ 0, u0(0) > 0, x ∈ (0, s0).

(1)
We have to specify the condition on the fixed part of the boundary. We set
the heat flux to be consitent with the decay of the fundamental solution,

− ux(0, t) =
h√
t+ 1

, h > 0. (2)

Our goal is to discuss the long time behavior. However, the system (1-2)
has no steady states, because the energy is pumped into the system. We
expect that solutions to (1-2) converge ot a self-similar solution (sss).
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A similar problem arising as a corrosion model was studied by DH, there
instead of (2) the Dirichlet data was considered.

Since the Stefan problem is classical there is no need to discuss existence
of solutions. This was settled:
Proposition 1 (A.Friedman 1964, D.Andreucci 2004)
If u0 ∈ Lip ([0, s0]), then there exists u a unique classical solution to (1-2),
i.e. u ∈ C2,1(ΩT ) and u, ux ∈ C(Ω̄T \ [0, s0] × {0}), s ∈ C1(0, T ),
ṡ ≥ 0.
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Self-similar solutions
The parabolic scaling suggests that any sss has the form (u(x, t), s(t)) =

(U( x√
t+1

), ω
√
t+ 1). We denote ω

√
t+ 1 by σ(t). If we plug this into

(1-2), then after setting η = x√
t+1

we obtain

Uηη + η
2Uη = 0 η ∈ (0, ω),

−Uη = h, U(ω) = 0,
ω
2 = −Uη(ω).

(3)

This problem has a unique solution U(η) = h
∫ ω
η e
−τ2/4 dτ , where ω is

the unique solution of

h =
y

2
ey

2/4.
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Convergence
Here is our main result.
Theorem 2. (D.Hilhorst, S.Roscani, PR, 2024)
Let us suppose that 0 ≤ u ∈ Lip (R+), u0(0) > 0, s0 > 0, u0(x) = 0 for
x > s0. Then, the unique solution to the Stefan problem (1-2) converges
to (U, σ). More precisely,
(1) limt→∞

s(t)√
t+1

= ω;

(2) limt→∞ sup x√
t+1
∈[0,ω]

∣∣∣∣u(x, t)− U
(

x√
t+1

)∣∣∣∣ = 0.
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Here is the strategy of the proof.

(1) In general, we don’t like unbounded domains, so that we transform
the problem to a bounded region. This is done with the help of similarity
variables η = x√

t+1
, τ = ln(t+ 1). Hence, the spatial variable becomes

bounded and the sss will be transformed into a steady state.

(2) We fit the solution to the transformed system, (W, b) between upper
(W, b) and lower (W, b) solutions. They converge monotonically in time.

(3) The limits of (W, b) and (W, b) coincide with the steady state of the
transformed system. The comparison principle forces convergence of (W, b).
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The transformed problem
The resulting problem for (W (η, τ), b(τ)) = (u(x, t), s(t)) is

Wτ = Wηη + η
2Wη, η ∈ (0, b(τ)), τ > 0,

−Wη(0, τ) = h, W (b(τ), τ) = 0, τ > 0,

ḃ(τ) + b(τ)
2 = −Wη(b(τ), τ), τ > 0,

W (η,0) = u0(η), η ∈ (0, b0), b(0) = b0.

(4)

The advantage of this transformation is that the sss given by (3) becomes
a steady state of (4).
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Upper and lower solutions
We introduce classical lower (W, b) and upper solutions (W, b)

Wτ
≤
≥Wηη + η

2Wη, η(0, b(τ)), τ > 0,

−Wη(0, τ)
≤
≥ h, W (b(τ), τ) = 0, τ > 0,

ḃ(τ) + b(τ)
2

≤
≥ −Wη(b(τ), τ), τ > 0,

W (η,0)
≤
≥ u0(η), η ∈ (0, b0), b(0)

≤
≥ b0.
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Comparison Principle
Theorem 3. Let us suppose that (W, b) is a lower solution while (W, b)

is an upper solution. If W(η,0) ≤ W (η,0) and b(0) ≤ b(0), then for all
τ > 0 we have

W(η, τ) ≤W (η, τ) and b(τ) ≤ b(τ).

We find a time independent upper solution (Wu, bu), such that e.g. Wu(η) ≥
u0(η), bu(0) ≥ b0. We may also construct non-negative time independent
lower solution (W l, bl), such that W l(η) ≥ u0(η), bl(0) ≥ b0.
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We define solutions to (4)

(W, b) with initial data (W l, bl),

(W, b) with initial data (Wu, bu).

The Comparison Principle implies that not only for all τ > 0

W(η,0) ≤ W(η, τ) ≤W (η, τ) ≤W (η, τ) ≤W (η,0)

b(τ) ≤ b(τ) ≤ b̄(τ),

but also for all η ∈ (0, b0) functions

τ 7→ W(η, τ) and τ 7→W (η, τ).

are monotone.
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The main theorem follows from the following result.
Theorem 4. Let (W, b) be the solution to (4) with initial condition (u0, b0).
If (W∞, b∞) is the unique steady state of the transformed system (4),
then:
(a) limτ→∞ b(τ) = b∞;
(b) W (·, τ) ⇒W∞ on [0, β] for all β < b∞ when τ →∞;
(c) if W (·, τ) is extended by zero to R̄+, then W (·, τ) ⇒ W∞ on [0,∞).
Proof. Monotonicity of the interface implies that

lim
τ→∞ b(τ) = b∞ lim

τ→∞ b̄(τ) = b̄∞.

Moreover,

lim
τ→∞W (η, τ) = W (η), ∀η ∈ [0, b̄∞],

lim
τ→∞W(η, τ) = W(η), ∀η ∈ [0, β], ∀β < b∞.
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Weak convergence in H1

We have to show that the convergence is uniform and W = W, b̄∞ = b∞

and this it is the only steady state.

We test the equation with the solution W = W or W = W, formally we
have to first multiply W by a cut-off function. We integrate over

ΩT,1 = {(η, τ) ∈ R2
+ : x ∈ (0, b(τ)), t ∈ (T, T + 1)}

to get

L(T ) =
∫

ΩT,1

WWτ dηdτ =
∫

ΩT,1

W (Wηη +
η

2
WηW ) dηdτ = R(T ).

We integrate by parts to get

L(T ) =
1

2

∫
ΩT

∂

∂τ
W2 dηdτ =

1

2

∫ T+1

T

∂

∂τ

∫ b(τ)

0
W2 dηdτ

=
1

2

∫ b(T+1)

0
W2 dη −

1

2

∫ b(T )

0
W2 dη.
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We take care of R(T ),

R(T ) = −
∫

ΩT

W2
η +

∫ T+1

T
WWη

∣∣∣∣η=b(τ)
η=0 dτ

−1
4

∫
ΩT

W2∂η

∂η
+
∫ T+1

T

η

2
W2|η=b(τ)

η=0 .

After rearranging the terms and combining with L(T ) we obtain

1

2

∫ b(T+1)

0
W2(η, T + 1) dη +

∫
ΩT

(W2
η +

1

4
W2)

=
∫ T+1
T W (0, τ)h+ 1

2

∫ b(T )
0 W2(η, T ) dη ≤ D.

Thus, the set

{τ ∈ (T, T + 1) :
∫ b(T+1)

0
W2
η dη ≤ D}

has positive measure. Hence, we deduce that W∞ ∈ H1(0, b∞) and
W
∞ ∈ H1(0, b

∞
).
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Limit identification
Once we showed existence of the limits W∞ and W

∞ we may identify
them. We test

Wτ = Wηη +
η

2
Wη

with ϕ ∈ C∞c (R), with ϕη(0) = 0,

L2(T ) =
∫ T+1

T

∫ b(τ)

0
Wτ(η, τ)ϕ(η) dηdτ

=
∫ T+1

T

∂

∂τ

∫ b(τ)

0
W (η, τ)ϕ(η) dηdτ

=
∫ b(T+1)

0
W (η, T + 1)ϕ(η) dη −

∫ b(T )

0
W (η, T )ϕ(η) dη.

Obviously, limT→∞L2(T ) = 0.
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R2(T ) = −
∫

ΩT,1

Wη(η, τ)ϕη(η) dηdτ +
∫ T+1

T
Wηϕ|η=b(τ)

η=0

−
∫

ΩT,1

1

2
(ηϕ(η))ηW (η, τ) dηdτ +

∫ T+1

T

η

2
Wϕ(η)|η=b(τ)

η=0 dτ

=
∫

ΩT,1

W (η, τ)ϕηη(η) dηdτ −
∫ T+1

T
Wϕη|η=b(τ)

η=0 dτ

+
∫ T+1

T
((−ḃ−

b

2
)ϕ(b) + hϕ(0)) dτ

−
∫

ΩT,1

1

2
(ηϕ(η))ηW (η, τ) dηdτ + 0

=
∫

ΩT,1

W (ϕηη − (
η

2
ϕ)η) dητ + hϕ(0)

+
∫ T+1

T
(W (0, τ)ϕη(0)− (ḃ−

b

2
)ϕ(b)) dτ
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We see 0 = limT→∞L2(T ) = limT→∞R2(T ) and for U = W∞ or
U = W

∞

lim
T→∞

R2(T ) =
∫ b∞

0
U(η)(ϕηη − (

η

2
ϕ)η)

+hϕ(0) + U(0)ϕη(0) +
b

2
ϕ(b),

because

lim
T→∞

(Φ(b(T + 1))−Φ(b(T ))) = 0,

where Φ is any antiderivative of ϕ, Φ′ = ϕ. Finally, U and a = b∞ or
a = b̄∞ satisfy

0 =
∫ a

0
U(η)(ϕηη − (

η

2
ϕ)η) dη + hϕ(0) + U(0)ϕη(0) +

a

2
ϕ(a),
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i.e. the couple (U, a) is a distrubutional solution to the steady state eq.
Since we know that U ∈ H1(0, a), we deduce that U ∈ H2(0, a) and U
satisfies the boundary conditions,

Uη(0) = −h, U(a) = 0, Uη(a) = −
a

2
.

This means that (U, a) is a unique steady state (W∞, b∞), hence

(W∞, b∞) = (U, a) = (W∞, b∞).

Now, we improve the convergence. Since W∞ ∈ H1(0, b∞) we infer that
W∞ ∈ C1/2((0, b∞]). Since the sequences W and W are monotone and
converge to a continuous function we deduce by Dini Theorem, that the
convergence is uniform on [0, b∞], as desired.

After returning to the original variable we conclude the proof of our theo-
rem.
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