Existence for a class of fourth-order quasilinear parabolic equations

Michał Łasica

joint work with Y. Giga

Institute of Mathematics of the Polish Academy of Sciences

The 81st Fujihara Seminar Niseko, June 4, 2024

Motivation

Macroscopic models of thermodynamic fluctuations of crystal surfaces

$$u_t = \operatorname{div} \left(\mathbb{M}(\nabla u) \nabla f(-\operatorname{div} D\Phi(\nabla u)) \right) \\ = -\operatorname{div} \left(\mathbb{M}(\nabla u) f'(-\operatorname{div} D\Phi(\nabla u)) \nabla \operatorname{div} D\Phi(\nabla u) \right)$$

Motivation

Macroscopic models of thermodynamic fluctuations of crystal surfaces

$$u_t = \operatorname{div} \left(\mathbb{M}(\nabla u) \nabla f(-\operatorname{div} D\Phi(\nabla u)) \right) \\ = -\operatorname{div} \left(\mathbb{M}(\nabla u) f'(-\operatorname{div} D\Phi(\nabla u)) \nabla \operatorname{div} D\Phi(\nabla u) \right)$$

physical choices:

If
$$(p) = e^p$$
, $f(p) = p$
If $(\xi) \sim |\xi|^p$, $p > 1$ (Marzuola-Weare 2013)
If $(\xi) \sim |\xi|$ (Liu-Lu-Margetis-Marzuola 2017)
If $(\xi) \sim |\xi| + |\xi|^3$ (Margetis-Kohn 2006)
If $(\xi) \sim \begin{bmatrix} 1 & 0 \\ 0 & (1+|\xi|)^{-1} \end{bmatrix}$, $\mathbb{M}(\xi) \sim \mathbb{U}(\xi)^T \begin{bmatrix} 1 & 0 \\ 0 & (1+|\xi|)^{-1} \end{bmatrix} \mathbb{U}(\xi)$ (Margetis-Kohn 2006)

Approximate mathematical results

• existence for time-discretization of $u_t = \Delta \exp(-\Delta_p u)$ (Xu, 2018)

Approximate mathematical results

• existence for time-discretization of $u_t = \Delta \exp(-\Delta_p u)$ (Xu, 2018)

existence for time-discretization of

$$u_t = \operatorname{div} M(\nabla u) \nabla \exp(-\Delta_p u - \Delta_1 u)$$

with $M(\boldsymbol{\xi}) \sim \mathbb{U}(\boldsymbol{\xi})^T \begin{bmatrix} 1 & 0\\ 0 & (1 + |\boldsymbol{\xi}|)^{-1} \end{bmatrix} \mathbb{U}(\boldsymbol{\xi})$ (Xu, 2020)

Approximate mathematical results

- existence for time-discretization of $u_t = \Delta \exp(-\Delta_p u)$ (Xu, 2018)
- existence for time-discretization of

$$u_t = \operatorname{div} M(\nabla u) \nabla \exp(-\Delta_p u - \Delta_1 u)$$

with
$$M(\boldsymbol{\xi}) \sim \mathbb{U}(\boldsymbol{\xi})^T \begin{bmatrix} 1 & 0 \\ 0 & (1+|\boldsymbol{\xi}|)^{-1} \end{bmatrix} \mathbb{U}(\boldsymbol{\xi})$$
 (Xu, 2020)

- numerics for discretization of u_t = -dive^{-ψ_ε*Δ₁u}∇Δ₁u, stability of spatial discretization (Craig-Liu-Lu-Marzuola-Wang, 2022)
- existence for $u_t = \Delta \exp(-\Delta_p u)$, 1 (Price-Xu, 2023)

no maximum principle

- no maximum principle
- no comparison principle

- no maximum principle
- no comparison principle
- no viscosity solutions

- no maximum principle
- no comparison principle
- no viscosity solutions
- less developed regularity theory

- no maximum principle
- no comparison principle
- no viscosity solutions
- less developed regularity theory
- no propagation of bounds such as $\|\nabla u\|_{L^{\infty}(\Omega)}$

- no maximum principle
- no comparison principle
- no viscosity solutions
- less developed regularity theory
- no propagation of bounds such as $\|\nabla u\|_{L^{\infty}(\Omega)}$
- existence results rely on gradient flow formulations or monotonicity

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla^2 u)$$

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla^2 u)$$
$$u_t = -D\mathcal{F}(u) = -\mathrm{div}^2 D\Phi(\nabla^2 u)$$

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla^2 u)$$

$$u_t = -D\mathcal{F}(u) = -\mathrm{div}^2 D\Phi(\nabla^2 u)$$

Existence via classical theory due to Kōmura, Brezis,... (1960s)

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla^2 u)$$

$$u_t = -D\mathcal{F}(u) = -\mathrm{div}^2 D\Phi(\nabla^2 u)$$

Existence via classical theory due to Kōmura, Brezis,... (1960s) Examples:

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla^2 u)$$

$$u_t = -D\mathcal{F}(u) = -\operatorname{div}^2 D\Phi(\nabla^2 u)$$

Existence via classical theory due to Kōmura, Brezis,... (1960s)

•
$$\mathcal{F}(u) = \int_{\Omega} \exp(-\Delta u)$$
, $u_t = \Delta \exp(-\Delta u)$ (Gao-Liu-Lu 2019)

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla^2 u)$$

$$u_t = -D\mathcal{F}(u) = -\operatorname{div}^2 D\Phi(\nabla^2 u)$$

Existence via classical theory due to Kōmura, Brezis,... (1960s)

$$\begin{array}{l} \mathbf{\mathcal{F}}(u) = \int_{\Omega} \exp(-\Delta u), \, u_t = \Delta \exp(-\Delta u) \mbox{ (Gao-Liu-Lu 2019)} \\ \mathbf{\mathcal{F}}(u) = \int_{\Omega} (u_{xx} + c)^{-2} \mbox{ (Gao-Liu-Lu-Xu, 2018)} \end{array}$$

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla^2 u)$$

$$u_t = -D\mathcal{F}(u) = -\operatorname{div}^2 D\Phi(\nabla^2 u)$$

Existence via classical theory due to Kōmura, Brezis,... (1960s)

$$\begin{array}{l} \mathbf{\mathcal{F}}(u) = \int_{\Omega} \exp(-\Delta u), \, u_t = \Delta \exp(-\Delta u) \text{ (Gao-Liu-Lu 2019)} \\ \mathbf{\mathcal{F}}(u) = \int_{\Omega} (u_{xx} + c)^{-2} \text{ (Gao-Liu-Lu-Xu, 2018)} \\ \mathbf{\mathcal{F}}(u) = \int_{\Omega} \exp(-(\ln u_x)_x) \text{ (Gao 2019)} \end{array}$$

Monotone operators

$$u_t = \mathcal{L}(u)$$
$$\langle \mathcal{L}(v) - \mathcal{L}(w), v - w \rangle \le 0$$

General theory by Minty (1962), Browder (1970), ...

$$u_t = \mathcal{L}(u)$$
$$\langle \mathcal{L}(v) - \mathcal{L}(w), v - w \rangle \le 0$$

General theory by Minty (1962), Browder (1970), ...

General existence result using Galerkin method by Vishik (1962) for parabolic systems of form

$$\boldsymbol{u}_t + (-1)^n \operatorname{div}^n \mathbb{L}(t, x, \boldsymbol{u}, \nabla \boldsymbol{u}, \dots, \nabla^n \boldsymbol{u}) = \boldsymbol{g}(t, x)$$

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla u)$$
$$(u_t, \psi)_{\dot{H}^{-1}(\Omega)} = \langle -D\mathcal{F}(u), \psi \rangle$$

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla u)$$
$$(u_t, \psi)_{\dot{H}^{-1}(\Omega)} = \langle -D\mathcal{F}(u), \psi \rangle$$
$$\int_{\Omega} (-\Delta)^{-1} u_t \, \psi = \int_{\Omega} D\Phi(\nabla u) \cdot \nabla \psi$$

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla u)$$
$$(u_t, \psi)_{\dot{H}^{-1}(\Omega)} = \langle -D\mathcal{F}(u), \psi \rangle$$
$$\int_{\Omega} (-\Delta)^{-1} u_t \, \psi = \int_{\Omega} D\Phi(\nabla u) \cdot \nabla \psi$$
$$u_t = -\Delta \mathrm{div} D\Phi(\nabla u)$$

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\nabla u)$$
$$(u_t, \psi)_{\dot{H}^{-1}(\Omega)} = \langle -D\mathcal{F}(u), \psi \rangle$$
$$\int_{\Omega} (-\Delta)^{-1} u_t \psi = \int_{\Omega} D\Phi(\nabla u) \cdot \nabla \psi$$
$$u_t = -\Delta \text{div} D\Phi(\nabla u)$$

Example:

• $\Phi(\boldsymbol{\xi}) = |\boldsymbol{\xi}|, u_t = -\Delta \operatorname{div} \frac{\nabla u}{|\nabla u|}$ (Giga-Giga 2010, Giga-Kuroda-Matsuoka 2014, Giga-Kuroda-Ł 2023)

$$\mathbb{B} = \mathbb{B}(t, x), \quad (v, w)_{\dot{H}_{\mathbb{B}(t, \cdot)}^{-1}(\Omega)} = \int_{\Omega} v(-\operatorname{div} \mathbb{B}(t, \cdot) \, \nabla)^{-1} w$$

$$\mathbb{B} = \mathbb{B}(t, x), \quad (v, w)_{\dot{H}_{\mathbb{B}(t, \cdot)}^{-1}(\Omega)} = \int_{\Omega} v(-\operatorname{div} \mathbb{B}(t, \cdot) \nabla)^{-1} w$$
$$(u_t, \psi)_{\dot{H}_{\mathbb{B}(t, \cdot)}^{-1}(\Omega)} = \langle -D\mathcal{F}(u), \psi \rangle$$

$$\mathbb{B} = \mathbb{B}(t, x), \quad (v, w)_{\dot{H}_{\mathbb{B}(t, \cdot)}^{-1}(\Omega)} = \int_{\Omega} v(-\operatorname{div} \mathbb{B}(t, \cdot) \nabla)^{-1} w$$
$$(u_t, \psi)_{\dot{H}_{\mathbb{B}(t, \cdot)}^{-1}(\Omega)} = \langle -D\mathcal{F}(u), \psi \rangle$$
$$\int_{\Omega} (-\operatorname{div} \mathbb{B} \nabla)^{-1} u_t \, \psi = \int_{\Omega} D\Phi(\nabla u) \cdot \nabla \psi$$

$$\mathbb{B} = \mathbb{B}(t, x), \quad (v, w)_{\dot{H}_{\mathbb{B}(t, \cdot)}^{-1}(\Omega)} = \int_{\Omega} v(-\operatorname{div} \mathbb{B}(t, \cdot) \nabla)^{-1} w$$
$$(u_t, \psi)_{\dot{H}_{\mathbb{B}(t, \cdot)}^{-1}(\Omega)} = \langle -D\mathcal{F}(u), \psi \rangle$$
$$\int_{\Omega} (-\operatorname{div} \mathbb{B} \nabla)^{-1} u_t \, \psi = \int_{\Omega} D\Phi(\nabla u) \cdot \nabla \psi$$
$$u_t = -\operatorname{div} \mathbb{B} \nabla \operatorname{div} D\Phi(\nabla u)$$

$$\mathbb{B} = \mathbb{B}(t, x), \quad (v, w)_{\dot{H}_{\mathbb{B}(t, \cdot)}^{-1}(\Omega)} = \int_{\Omega} v(-\operatorname{div} \mathbb{B}(t, \cdot) \nabla)^{-1} w$$
$$(u_t, \psi)_{\dot{H}_{\mathbb{B}(t, \cdot)}^{-1}(\Omega)} = \langle -D\mathcal{F}(u), \psi \rangle$$
$$\int_{\Omega} (-\operatorname{div} \mathbb{B} \nabla)^{-1} u_t \psi = \int_{\Omega} D\Phi(\nabla u) \cdot \nabla \psi$$

 $u_t = -\operatorname{div} \mathbb{B} \,\nabla \operatorname{div} D\Phi(\nabla u)$

Damlamian, 1974: existence of $H_{\mathbb{R}}^{-1}$ gradient flows assuming

■ $t \mapsto \mathbb{B}(t, \cdot)$ is a family of uniformly equivalent scalar products on \mathbb{R}^n ■ $\mathbb{B} \in W^{1,1}(0, T, L^{\infty}(\Omega))$ W_q — a metric on the space of probability measures with finite q-th moment

 W_q — a metric on the space of probability measures with finite q-th moment

 W_2 — weaker than H^{-1} distance, equivalent to H^{-1} on measures with bounded densities

Wasserstein gradient flows

 W_q — a metric on the space of probability measures with finite *q*-th moment

 W_2 — weaker than H^{-1} distance, equivalent to H^{-1} on measures with bounded densities

Examples:

• $\mathcal{F}(u) = \int_{\Omega} |\nabla u|^2$, $u_t = -\text{div}u\nabla\Delta u$, lubrication problems (Otto, 1998; Giacomelli-Otto 2001)

Wasserstein gradient flows

 W_q — a metric on the space of probability measures with finite *q*-th moment

 W_2 — weaker than H^{-1} distance, equivalent to H^{-1} on measures with bounded densities

Examples:

■ $\mathcal{F}(u) = \int_{\Omega} |\nabla u|^2$, $u_t = -\text{div}u\nabla\Delta u$, lubrication problems (Otto, 1998; Giacomelli-Otto 2001)

• $u_t = -\operatorname{div} b(u) \nabla(\Delta u - g(u))$ (Lisini-Matthes-Savaré 2012)

Wasserstein gradient flows

 W_q — a metric on the space of probability measures with finite *q*-th moment

 W_2 — weaker than H^{-1} distance, equivalent to H^{-1} on measures with bounded densities

- $\mathcal{F}(u) = \int_{\Omega} |\nabla u|^2$, $u_t = -\text{div}u\nabla\Delta u$, lubrication problems (Otto, 1998; Giacomelli-Otto 2001)
- $u_t = -\operatorname{div} b(u) \nabla(\Delta u g(u))$ (Lisini-Matthes-Savaré 2012)
- div B(u) ∇ via Wasserstein metrics (Mielke, 2011; Liero-Mielke 2013)

Basic result: assumptions

$$\boldsymbol{u}_t + \operatorname{div} \mathcal{B}(\boldsymbol{u}) \nabla \mathcal{A}(\boldsymbol{u}) = \operatorname{div} \boldsymbol{g}$$
 (*)

- for simplicity $\Omega = \mathbb{T}^n$
- $\mathcal{A}(\boldsymbol{u}) = \operatorname{div} D_{\boldsymbol{\xi}} \Phi(\boldsymbol{x}, \nabla \boldsymbol{u})$
- Φ is convex and C^1 with respect to the gradient variable,

$$c_0(|\boldsymbol{\xi}|^p - 1) \le \Phi(x, \boldsymbol{\xi}), \qquad |D_{\boldsymbol{\xi}}\Phi(x, \boldsymbol{\xi})| \le c_1(|\boldsymbol{\xi}|^{p-1} + 1)$$

with $p > \max(1, \frac{2n}{n+4})$

B(u) = B(t, x, u, ∇u, A(u)) with a Carathéodory function B taking values in L(ℝ^{nN}, ℝ^{nN}) satisfying

$$\mu \mathbb{I} \leq \mathbb{B} \leq M \mathbb{I}$$

•
$$\boldsymbol{g} = \boldsymbol{g}(t, x) \in L^2(]0, T[\times \Omega)^{nN}$$
$$\boldsymbol{u}_t + \operatorname{div} \mathcal{B}(\boldsymbol{u}) \nabla \mathcal{A}(\boldsymbol{u}) = \operatorname{div} \boldsymbol{g}$$
 (*)

Theorem (Giga-Ł, in preparation)

Let $u_0 \in W^{1,p}(\Omega)$ and let T > 0. There exists a weak solution to (*) in $]0, T[\times \Omega$ with initial datum u_0 satisfying energy inequality

$$\begin{split} \sup_{0 < t < T} \int_{\Omega} \Phi(\cdot, \nabla \boldsymbol{u}) + \frac{1}{2} \int_{0}^{T} \!\!\!\!\int_{\Omega} \nabla \mathcal{A}(\boldsymbol{u}) \colon \mathcal{B}(\boldsymbol{u}) \nabla \mathcal{A}(\boldsymbol{u}) \\ & \leq 2 \int_{\Omega} \Phi(\cdot, \nabla \boldsymbol{u}_{0}) + \frac{1}{\mu} \int_{0}^{T} \!\!\!\!\int_{\Omega} |\boldsymbol{g}|^{2}. \end{split}$$

- Galerkin expansion in terms of eigenvectors of the operator $\nabla {\rm div} = \Delta$ on $L^2_{\nabla}(\Omega)^{nN}$

- Galerkin expansion in terms of eigenvectors of the operator $\nabla div = \Delta$ on $L^2_{\nabla}(\Omega)^{nN}$
- approximate solutions u_j to

$$\boldsymbol{u}_{j,t} + \operatorname{div} \mathcal{P}_j \left(\mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) \right) = \operatorname{div} \mathcal{P}_j \boldsymbol{g},$$

where \mathcal{P}_{j} – projection onto first j eigenvectors and

 $\mathcal{A}_j(\boldsymbol{w}) = \operatorname{div} \mathcal{P}_j D_{\boldsymbol{\xi}} \Phi(x, \nabla \boldsymbol{w}), \quad \mathcal{B}_j(\boldsymbol{w}) = \mathbb{B}(t, x, \boldsymbol{w}, \nabla \boldsymbol{w}, \mathcal{A}_j(\boldsymbol{w}))$

satisfy energy inequality

- Galerkin expansion in terms of eigenvectors of the operator $\nabla div = \Delta$ on $L^2_{\nabla}(\Omega)^{nN}$
- approximate solutions u_j to

$$\boldsymbol{u}_{j,t} + \operatorname{div} \mathcal{P}_j \left(\mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) \right) = \operatorname{div} \mathcal{P}_j \boldsymbol{g},$$

where \mathcal{P}_{j} – projection onto first j eigenvectors and

 $\mathcal{A}_j(\boldsymbol{w}) = \operatorname{div} \mathcal{P}_j D_{\boldsymbol{\xi}} \Phi(x, \nabla \boldsymbol{w}), \quad \mathcal{B}_j(\boldsymbol{w}) = \mathbb{B}(t, x, \boldsymbol{w}, \nabla \boldsymbol{w}, \mathcal{A}_j(\boldsymbol{w}))$

satisfy energy inequality

by boundedness of energy and monotonicity we have strong convergence ∇u_j → ∇u, D_ξΦ(·, ∇u_j) → D_ξΦ(·, ∇u)

- Galerkin expansion in terms of eigenvectors of the operator $\nabla div = \Delta$ on $L^2_{\nabla}(\Omega)^{nN}$
- approximate solutions u_j to

$$\boldsymbol{u}_{j,t} + \operatorname{div} \mathcal{P}_j \left(\mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) \right) = \operatorname{div} \mathcal{P}_j \boldsymbol{g},$$

where \mathcal{P}_{i} – projection onto first j eigenvectors and

 $\mathcal{A}_j(\boldsymbol{w}) = \operatorname{div} \mathcal{P}_j D_{\boldsymbol{\xi}} \Phi(x, \nabla \boldsymbol{w}), \quad \mathcal{B}_j(\boldsymbol{w}) = \mathbb{B}(t, x, \boldsymbol{w}, \nabla \boldsymbol{w}, \mathcal{A}_j(\boldsymbol{w}))$

satisfy energy inequality

- by boundedness of energy and monotonicity we have strong convergence $\nabla u_j \rightarrow \nabla u$, $D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla u_j) \rightarrow D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla u)$
- using the L^2 bound on $\nabla A_j(w)$ and interpolation, we obtain strong convergence of $A_j(u_j)$ and then $\mathcal{B}_j(u_j)$

Galerkin approximation

 $\omega_1, \omega_2, \ldots$ — orthogonal eigenbasis of Δ on $L^2_{av}(\Omega)^N$ $\nabla \omega_1, \nabla \omega_2, \ldots$ — orthogonal eigenbasis of $\nabla \operatorname{div} = \Delta$ on $L^2_{\nabla}(\Omega)^{nN}$

 \mathcal{P}_j — orthogonal projection onto $\operatorname{span}(
abla \omega_1,\ldots,
abla \omega_j)$

Galerkin approximation

 $\omega_1, \omega_2, \ldots$ — orthogonal eigenbasis of Δ on $L^2_{av}(\Omega)^N$ $\nabla \omega_1, \nabla \omega_2, \ldots$ — orthogonal eigenbasis of $\nabla \operatorname{div} = \Delta$ on $L^2_{\nabla}(\Omega)^{nN}$ \mathcal{P}_j — orthogonal projection onto $\operatorname{span}(\nabla \omega_1, \ldots, \nabla \omega_j)$

$$\mathcal{A}_j(\boldsymbol{w}) = \operatorname{div} \mathcal{P}_j D_{\boldsymbol{\xi}} \Phi(x, \nabla \boldsymbol{w}), \quad \mathcal{B}_j(\boldsymbol{w}) = \mathbb{B}(t, x, \boldsymbol{w}, \nabla \boldsymbol{w}, \mathcal{A}_j(\boldsymbol{w})).$$

$$\boldsymbol{u}_{j,t} + \operatorname{div} \mathcal{P}_j \left(\mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) \right) = \operatorname{div} \mathcal{P}_j \boldsymbol{g},$$

 $\boldsymbol{u}_j(0,\cdot) = \boldsymbol{u}_{0,j}$ — projection onto $\operatorname{span}(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_N,\boldsymbol{\omega}_1,\ldots,\boldsymbol{\omega}_j).$

Galerkin approximation

 $\omega_1, \omega_2, \ldots$ — orthogonal eigenbasis of Δ on $L^2_{av}(\Omega)^N$ $\nabla \omega_1, \nabla \omega_2, \ldots$ — orthogonal eigenbasis of $\nabla \operatorname{div} = \Delta$ on $L^2_{\nabla}(\Omega)^{nN}$ \mathcal{P}_j — orthogonal projection onto $\operatorname{span}(\nabla \omega_1, \ldots, \nabla \omega_j)$

$$\mathcal{A}_j(\boldsymbol{w}) = \operatorname{div} \mathcal{P}_j D_{\boldsymbol{\xi}} \Phi(x, \nabla \boldsymbol{w}), \quad \mathcal{B}_j(\boldsymbol{w}) = \mathbb{B}(t, x, \boldsymbol{w}, \nabla \boldsymbol{w}, \mathcal{A}_j(\boldsymbol{w})).$$

$$\boldsymbol{u}_{j,t} + \operatorname{div} \mathcal{P}_j \left(\mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) \right) = \operatorname{div} \mathcal{P}_j \boldsymbol{g},$$

 $\boldsymbol{u}_j(0,\cdot) = \boldsymbol{u}_{0,j}$ — projection onto $\operatorname{span}(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_N,\boldsymbol{\omega}_1,\ldots,\boldsymbol{\omega}_j).$

$$\boldsymbol{u}_j(t,\cdot) = (a_1,\ldots,a_N) + \sum_{i=1}^j a_{ji}(t)\boldsymbol{\omega}_i,$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \Phi(\cdot, \nabla \boldsymbol{u}_j) = \int_{\Omega} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) : \nabla \boldsymbol{u}_{j,t}$$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \Phi(\cdot, \nabla \boldsymbol{u}_j) &= \int_{\Omega} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) : \nabla \boldsymbol{u}_{j,t} \\ &= -\int_{\Omega} \nabla \mathrm{div} \, D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) : \left(\mathcal{P}_j \left(\mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) \right) + \mathcal{P}_j \, \boldsymbol{g} \right) \end{split}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \Phi(\cdot, \nabla \boldsymbol{u}_j) = \int_{\Omega} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) : \nabla \boldsymbol{u}_{j,t}$$
$$= -\int_{\Omega} \nabla \mathrm{div} \, D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) : (\mathcal{P}_j \left(\mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) \right) + \mathcal{P}_j \, \boldsymbol{g})$$
$$= -\int_{\Omega} \nabla \mathcal{A}_j(\boldsymbol{u}_j) : \mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) + \int_{\Omega} \nabla \mathcal{A}_j(\boldsymbol{u}_j) : \boldsymbol{g}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \Phi(\cdot, \nabla \boldsymbol{u}_j) = \int_{\Omega} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) : \nabla \boldsymbol{u}_{j,t}$$
$$= -\int_{\Omega} \nabla \mathrm{div} \, D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) : (\mathcal{P}_j \, (\mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j)) + \mathcal{P}_j \, \boldsymbol{g})$$
$$= -\int_{\Omega} \nabla \mathcal{A}_j(\boldsymbol{u}_j) : \mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) + \int_{\Omega} \nabla \mathcal{A}_j(\boldsymbol{u}_j) : \boldsymbol{g}$$
$$\leq -\frac{1}{2} \int_{\Omega} \nabla \mathcal{A}_j(\boldsymbol{u}_j) : \mathcal{B}_j(\boldsymbol{u}_j) \nabla \mathcal{A}_j(\boldsymbol{u}_j) + \frac{1}{2\mu} \int_{\Omega} |\boldsymbol{g}|^2$$

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \Phi(\cdot, \nabla \boldsymbol{u}_{j}) &= \int_{\Omega} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_{j}) : \nabla \boldsymbol{u}_{j,t} \\ &= -\int_{\Omega} \nabla \mathrm{div} \, D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_{j}) : (\mathcal{P}_{j} \left(\mathcal{B}_{j}(\boldsymbol{u}_{j}) \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j})\right) + \mathcal{P}_{j} \, \boldsymbol{g}) \\ &= -\int_{\Omega} \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) : \mathcal{B}_{j}(\boldsymbol{u}_{j}) \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) + \int_{\Omega} \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) : \boldsymbol{g} \\ &\leq -\frac{1}{2} \int_{\Omega} \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) : \mathcal{B}_{j}(\boldsymbol{u}_{j}) \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) + \frac{1}{2\mu} \int_{\Omega} |\boldsymbol{g}|^{2} \\ &\sup_{0 < t < T} \int_{\Omega} \Phi(\cdot, \nabla \boldsymbol{u}_{j}) + \frac{1}{2} \int_{0}^{T} \int_{\Omega} \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) \cdot \mathcal{B}_{j}(\boldsymbol{u}_{j}) \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) \\ &\leq 2 \int_{\Omega} \Phi(\cdot, \nabla \boldsymbol{u}_{0,j}) + \frac{1}{\mu} \int_{0}^{T} \int_{\Omega} |\boldsymbol{g}|^{2}. \end{aligned}$$

$$\begin{split} & \boldsymbol{u}_{j} - \text{uniformly bounded in } L^{\infty}(0,T,W^{1,p}(\Omega)) \\ & \mathcal{A}_{j}(\boldsymbol{u}_{j}) - \text{uniformly bounded in } L^{2}(0,T,H^{1}(\Omega)) \\ & \boldsymbol{u}_{j,t} = -\text{div} \, \mathcal{P}_{j} \left(\mathcal{B}_{j}(\boldsymbol{u}_{j}) \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) \right) + \text{div} \, \mathcal{P}_{j} \, \boldsymbol{g} \\ & \boldsymbol{u}_{j,t} - \text{uniformly bounded in } L^{2}(0,T,H^{-1}(\Omega)) \\ & \implies \boldsymbol{u}_{j} \rightarrow \boldsymbol{u} \text{ in } C([0,T],L^{q}(\Omega)), \quad q < p^{*} \end{split}$$

$$\begin{split} & \boldsymbol{u}_{j} - \text{uniformly bounded in } L^{\infty}(0, T, W^{1,p}(\Omega)) \\ & \mathcal{A}_{j}(\boldsymbol{u}_{j}) - \text{uniformly bounded in } L^{2}(0, T, H^{1}(\Omega)) \\ & \boldsymbol{u}_{j,t} = -\text{div } \mathcal{P}_{j} \left(\mathcal{B}_{j}(\boldsymbol{u}_{j}) \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) \right) + \text{div } \mathcal{P}_{j} \boldsymbol{g} \\ & \boldsymbol{u}_{j,t} - \text{uniformly bounded in } L^{2}(0, T, H^{-1}(\Omega)) \\ & \implies \boldsymbol{u}_{j} \rightarrow \boldsymbol{u} \text{ in } C([0, T], L^{q}(\Omega)), \quad q < p^{*} \end{split}$$

Mazur's lemma, integration by parts

$$\implies \lim_{j \to \infty} \int_0^T \int_{\Omega} (D\Phi(\cdot, \nabla \boldsymbol{u}_j) - D\Phi(\cdot, \nabla \boldsymbol{u})) \cdot (\nabla \boldsymbol{u}_j - \nabla \boldsymbol{u}) = 0$$

$$\begin{split} & \boldsymbol{u}_{j} - \text{uniformly bounded in } L^{\infty}(0,T,W^{1,p}(\Omega)) \\ & \mathcal{A}_{j}(\boldsymbol{u}_{j}) - \text{uniformly bounded in } L^{2}(0,T,H^{1}(\Omega)) \\ & \boldsymbol{u}_{j,t} = -\text{div} \, \mathcal{P}_{j} \left(\mathcal{B}_{j}(\boldsymbol{u}_{j}) \nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) \right) + \text{div} \, \mathcal{P}_{j} \, \boldsymbol{g} \\ & \boldsymbol{u}_{j,t} - \text{uniformly bounded in } L^{2}(0,T,H^{-1}(\Omega)) \\ & \implies \boldsymbol{u}_{j} \rightarrow \boldsymbol{u} \text{ in } C([0,T],L^{q}(\Omega)), \quad q < p^{*} \end{split}$$

Mazur's lemma, integration by parts

$$\implies \lim_{j \to \infty} \int_0^T \int_{\Omega} (D\Phi(\cdot, \nabla u_j) - D\Phi(\cdot, \nabla u)) \cdot (\nabla u_j - \nabla u) = 0$$
$$\implies \nabla u_j \to \nabla u \text{ a. e.}$$

$$\begin{split} & \boldsymbol{u}_{j} - \text{uniformly bounded in } L^{\infty}(0, T, W^{1,p}(\Omega)) \\ & \mathcal{A}_{j}(\boldsymbol{u}_{j}) - \text{uniformly bounded in } L^{2}(0, T, H^{1}(\Omega)) \\ & \boldsymbol{u}_{j,t} = -\text{div } \mathcal{P}_{j}\left(\mathcal{B}_{j}(\boldsymbol{u}_{j})\nabla\mathcal{A}_{j}(\boldsymbol{u}_{j})\right) + \text{div } \mathcal{P}_{j} \boldsymbol{g} \\ & \boldsymbol{u}_{j,t} - \text{uniformly bounded in } L^{2}(0, T, H^{-1}(\Omega)) \\ & \implies \boldsymbol{u}_{j} \rightarrow \boldsymbol{u} \text{ in } C([0, T], L^{q}(\Omega)), \quad q < p^{*} \end{split}$$

Mazur's lemma, integration by parts

$$\implies \lim_{j \to \infty} \int_0^T \int_{\Omega} (D\Phi(\cdot, \nabla u_j) - D\Phi(\cdot, \nabla u)) \cdot (\nabla u_j - \nabla u) = 0$$
$$\implies \nabla u_j \to \nabla u \text{ a. e.}$$
$$\implies D_{\xi} \Phi(\cdot, \nabla u_j) \to D_{\xi} \Phi(\cdot, \nabla u) \text{ in } L^s(0, T, L^{r'}(\Omega)), \quad r' < p'$$

$$\int_{0}^{T} \int_{\Omega} (\mathcal{A}_{j}(\boldsymbol{u}_{j}) - \mathcal{A}(\boldsymbol{u}))^{2}$$

= $-\int_{0}^{T} \int_{\Omega} (\nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) - \nabla \mathcal{A}(\boldsymbol{u})) \cdot (\mathcal{P}_{j} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_{j}) - \mathcal{P}_{\nabla} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}))$

$$\int_{0}^{T} \int_{\Omega} (\mathcal{A}_{j}(\boldsymbol{u}_{j}) - \mathcal{A}(\boldsymbol{u}))^{2}$$

= $-\int_{0}^{T} \int_{\Omega} (\nabla \mathcal{A}_{j}(\boldsymbol{u}_{j}) - \nabla \mathcal{A}(\boldsymbol{u})) \cdot (\mathcal{P}_{j} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_{j}) - \mathcal{P}_{\nabla} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}))$

$$\mathcal{P}_{j}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}_{j}) - \mathcal{P}_{\nabla}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u})$$

$$= (\mathcal{P}_{j}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}_{j}) - \mathcal{P}_{j}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}))$$

$$+ (\mathcal{P}_{j}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}) - \mathcal{P}_{\nabla}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}))$$

$$=: \mathcal{P}_{j}M_{j} + N_{j}.$$

 $N_j \rightarrow 0$ in $L^2(0, T, L^2(\Omega))$

$$M_j = D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) - D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u})$$

$$M_j = D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) - D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u})$$

$$\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)} \leq \|\mathcal{P}_{j}M_{j}(t,\cdot)\|^{\vartheta}_{\dot{H}^{2}(\Omega)}\|\mathcal{P}_{j}M_{j}(t,\cdot)\|^{1-\vartheta}_{\dot{H}^{-\sigma}(\Omega)}$$

$$M_j = D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) - D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u})$$

$$\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)} \leq \|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{2}(\Omega)}^{\vartheta}\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{-\sigma}(\Omega)}^{1-\vartheta}$$

$$\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{2}(\Omega)}^{2} = \|\Delta\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)}^{2} = \|\nabla \operatorname{div}\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)}^{2}$$

$$M_j = D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) - D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u})$$

$$\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)} \leq \|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{2}(\Omega)}^{\vartheta}\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{-\sigma}(\Omega)}^{1-\vartheta}$$

$$\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{2}(\Omega)}^{2} = \|\Delta\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)}^{2} = \|\nabla \operatorname{div}\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)}^{2}$$

$$\begin{aligned} \|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{-\sigma}(\Omega)} &\leq C \|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{H^{-\sigma}(\Omega)} \\ &\leq C \|M_{j}(t,\cdot)\|_{H^{-\sigma}(\Omega)} \leq \widetilde{C} \|M_{j}(t,\cdot)\|_{L^{r'}(\Omega)} \end{aligned}$$

$$M_j = D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) - D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u})$$

$$\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)} \leq \|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{2}(\Omega)}^{\vartheta}\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{-\sigma}(\Omega)}^{1-\vartheta}$$

$$\|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{2}(\Omega)}^{2} = \|\Delta\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)}^{2} = \|\nabla \operatorname{div}\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(\Omega)}^{2}$$

$$\begin{aligned} \|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{\dot{H}^{-\sigma}(\Omega)} &\leq C \|\mathcal{P}_{j}M_{j}(t,\cdot)\|_{H^{-\sigma}(\Omega)} \\ &\leq C \|M_{j}(t,\cdot)\|_{H^{-\sigma}(\Omega)} \leq \widetilde{C} \|M_{j}(t,\cdot)\|_{L^{r'}(\Omega)} \end{aligned}$$

$$\begin{aligned} \|\mathcal{P}_{j}M_{j}\|_{L^{2}(0,T,L^{2}(\Omega))} \\ &\leq \widetilde{C}^{1-\vartheta}\|\nabla \mathrm{div}\mathcal{P}_{j}M_{j}(t,\cdot)\|_{L^{2}(0,T,L^{2}(\Omega))}^{\vartheta}\|M_{j}(t,\cdot)\|_{L^{2}(0,T,L^{r'}(\Omega))}^{1-\vartheta} \end{aligned}$$

 $\mathcal{P}_j D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) \to \mathcal{P}_{\nabla} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}) \text{ in } L^2(\Omega_T)$

$\mathcal{P}_j D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}_j) \to \mathcal{P}_{\nabla} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u}) \text{ in } L^2(\Omega_T)$

$\implies \mathcal{A}_j(\boldsymbol{u}_j) \to \mathcal{A}(\boldsymbol{u}) \text{ in } L^2(\Omega_T)$

$$\begin{split} \mathcal{P}_{j}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}_{j}) &\to \mathcal{P}_{\nabla}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}) \text{ in } L^{2}(\Omega_{T}) \\ & \Longrightarrow \ \mathcal{A}_{j}(\boldsymbol{u}_{j}) \to \mathcal{A}(\boldsymbol{u}) \text{ in } L^{2}(\Omega_{T}) \\ & \Longrightarrow \ \mathcal{B}_{j}(\boldsymbol{u}_{j}) \to \mathcal{B}(\boldsymbol{u}) \text{ in } L^{2}(\Omega_{T}) \end{split}$$

 $\mathcal{P}_{j}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}_{j}) \to \mathcal{P}_{\nabla}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}) \text{ in } L^{2}(\Omega_{T})$ $\implies \mathcal{A}_{j}(\boldsymbol{u}_{j}) \to \mathcal{A}(\boldsymbol{u}) \text{ in } L^{2}(\Omega_{T})$ $\implies \mathcal{B}_{j}(\boldsymbol{u}_{j}) \to \mathcal{B}(\boldsymbol{u}) \text{ in } L^{2}(\Omega_{T})$ $\implies \mathcal{B}_{j}(\boldsymbol{u}_{j})\nabla\mathcal{A}_{i}(\boldsymbol{u}_{j}) \to \mathcal{B}(\boldsymbol{u})\nabla\mathcal{A}(\boldsymbol{u}) \text{ in } L^{1}(\Omega_{T})$

$$\mathcal{P}_{j}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}_{j}) \to \mathcal{P}_{\nabla}D_{\boldsymbol{\xi}}\Phi(\cdot,\nabla\boldsymbol{u}) \text{ in } L^{2}(\Omega_{T})$$

$$\implies \mathcal{A}_{j}(\boldsymbol{u}_{j}) \to \mathcal{A}(\boldsymbol{u}) \text{ in } L^{2}(\Omega_{T})$$

$$\implies \mathcal{B}_{j}(\boldsymbol{u}_{j}) \to \mathcal{B}(\boldsymbol{u}) \text{ in } L^{2}(\Omega_{T})$$

$$\implies \mathcal{B}_{j}(\boldsymbol{u}_{j})\nabla\mathcal{A}_{j}(\boldsymbol{u}_{j}) \to \mathcal{B}(\boldsymbol{u})\nabla\mathcal{A}(\boldsymbol{u}) \text{ in } L^{1}(\Omega_{T})$$

$$\implies \boldsymbol{u}_{t} = \operatorname{div}\mathcal{B}(\boldsymbol{u})\nabla\mathcal{A}(\boldsymbol{u}) + \operatorname{div}\boldsymbol{g}$$

Scope

Generalizations:

unbounded \mathbb{B}

 $|\mathbb{B}(t, x, \boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{z})| \le c_2 \left(f_2(t, x) + |\boldsymbol{w}|^{q_0} + |\boldsymbol{\xi}|^{q_1} + |\boldsymbol{z}|^{q_2}
ight)$ with $f_2 \in L^1(]0, T[\times \Omega), q_0 < p^*, q_1 < p, q_2 < 2$

Scope

Generalizations:

 \blacksquare unbounded $\mathbb B$

$$|\mathbb{B}(t, x, \boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{z})| \le c_2 \left(f_2(t, x) + |\boldsymbol{w}|^{q_0} + |\boldsymbol{\xi}|^{q_1} + |\boldsymbol{z}|^{q_2}
ight)$$

with $f_2 \in L^1(]0, T[\times \Omega), q_0 < p^*, q_1 < p, q_2 < 2$

boundary conditions; we need a mild regularity assumption on Ω
 (C¹ is enough)

We obtained global-in-time existence of weak solutions to

$$oldsymbol{u}_t + ext{div} \mathcal{B}(oldsymbol{u})
abla \mathcal{A}(oldsymbol{u}) = ext{div} oldsymbol{g}, \quad \mathcal{A}(oldsymbol{u}) = ext{div} D_{oldsymbol{\xi}} \Phi(\cdot,
abla oldsymbol{u})$$

Bad things:

no uniqueness

We obtained global-in-time existence of weak solutions to

$$oldsymbol{u}_t + ext{div} \mathcal{B}(oldsymbol{u})
abla \mathcal{A}(oldsymbol{u}) = ext{div} oldsymbol{g}, \quad \mathcal{A}(oldsymbol{u}) = ext{div} D_{oldsymbol{\xi}} \Phi(\cdot,
abla oldsymbol{u})$$

- no uniqueness
- degeneracy of B present in physical models inadmissible

We obtained global-in-time existence of weak solutions to

 $\boldsymbol{u}_t + \operatorname{div} \boldsymbol{\mathcal{B}}(\boldsymbol{u}) \nabla \boldsymbol{\mathcal{A}}(\boldsymbol{u}) = \operatorname{div} \boldsymbol{g}, \quad \boldsymbol{\mathcal{A}}(\boldsymbol{u}) = \operatorname{div} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u})$

- no uniqueness
- degeneracy of $\ensuremath{\mathbb{B}}$ present in physical models inadmissible Nice things:
- we allow for tensorial mobilities $\mathcal{B}(u)$ depending on abla u and $\mathcal{A}(u)$

We obtained global-in-time existence of weak solutions to

 $\boldsymbol{u}_t + \operatorname{div} \boldsymbol{\mathcal{B}}(\boldsymbol{u}) \nabla \boldsymbol{\mathcal{A}}(\boldsymbol{u}) = \operatorname{div} \boldsymbol{g}, \quad \boldsymbol{\mathcal{A}}(\boldsymbol{u}) = \operatorname{div} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u})$

- no uniqueness
- degeneracy of $\ensuremath{\mathbb{B}}$ present in physical models inadmissible Nice things:
- we allow for tensorial mobilities $\mathcal{B}(u)$ depending on abla u and $\mathcal{A}(u)$
- we can approximate bad-behaving $\mathbb B$ and obtain sequence of approximate solutions converging weakly in $L^q(0,T,W^{1,p}(\Omega))$

We obtained global-in-time existence of weak solutions to

 $\boldsymbol{u}_t + \operatorname{div} \boldsymbol{\mathcal{B}}(\boldsymbol{u}) \nabla \boldsymbol{\mathcal{A}}(\boldsymbol{u}) = \operatorname{div} \boldsymbol{g}, \quad \boldsymbol{\mathcal{A}}(\boldsymbol{u}) = \operatorname{div} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u})$

- no uniqueness
- degeneracy of $\ensuremath{\mathbb{B}}$ present in physical models inadmissible Nice things:
- we allow for tensorial mobilities $\mathcal{B}(u)$ depending on abla u and $\mathcal{A}(u)$
- we can approximate bad-behaving $\mathbb B$ and obtain sequence of approximate solutions converging weakly in $L^q(0,T,W^{1,p}(\Omega))$
- we allow systems
Summary

We obtained global-in-time existence of weak solutions to

 $\boldsymbol{u}_t + \operatorname{div} \boldsymbol{\mathcal{B}}(\boldsymbol{u}) \nabla \boldsymbol{\mathcal{A}}(\boldsymbol{u}) = \operatorname{div} \boldsymbol{g}, \quad \boldsymbol{\mathcal{A}}(\boldsymbol{u}) = \operatorname{div} D_{\boldsymbol{\xi}} \Phi(\cdot, \nabla \boldsymbol{u})$

Bad things:

- no uniqueness
- degeneracy of $\ensuremath{\mathbb{B}}$ present in physical models inadmissible Nice things:
- we allow for tensorial mobilities $\mathcal{B}(u)$ depending on abla u and $\mathcal{A}(u)$
- we can approximate bad-behaving $\mathbb B$ and obtain sequence of approximate solutions converging weakly in $L^q(0,T,W^{1,p}(\Omega))$
- we allow systems

Thank you for your attention!