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Shape optimization via the cost functional "(Ω)

. . . . . .

Traction method in engineering design

Figure: Examples of optimal shape design in engineering from Prof.Hideyuki
Azegami’s web site: http://www.az.cs.is.nagoya-u.ac.jp/research.html
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Shape optimization approach

Kohn-Vogelius method [RS96]

J(Ω) =
∫

Ω
|∇(uD − uN)|2 dx → inf

where uD and uN respectively solves

(D)

⎧
⎨

⎩

−∆uD = 0 in Ω,
uD = 0 on Γ,
uD = f on Σ.

(N)

⎧
⎨

⎩

−∆uN = 0 in Ω,
uN = 0 on Γ,

∇uN · ν = g on Σ.

Shape derivative of J [RS96]
Let the underlying variation fields V be sufficiently
smooth such that a C1,1-regularity is preserved for all
the perturbed domains. Then,

dJ(Ω)[V] = lim
t↘0

J(Ωt)− J(Ω)
t

= d
dt

J(Ωt)
∣∣∣∣
t=0

=
∫

Γ
Gν ·V ds,

where

G := G+G− =
(
∂uD

∂ν
+ ∂uN

∂ν

)(
∂uD

∂ν
− ∂uN

∂ν

)
.
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Shape derivative (shape gradient) !

Shape optimization algorithm (∆$ > 0)

≀≀



Non-Destructive Testing (NDT) and Evaluation: Thermal Imaging1

In thermal imaging and NDT purposes,
• lock-in thermography (left figure) relies on modulated heating and synchronous detection to detect

surface defects with high sensitivity.
• Pulse thermography (right figure) utilizes a short heat pulse and analyzes the material’s cooling

behavior to detect subsurface defects.

1Photos taken from [Clemente Ibarra-Castanedo et al 2013 Eur. J. Phys. 34 S91]
4 / 50



Physical Model

Let D ∈ Rd be a simply connected domain with boundary Σ = ∂D and
assume that an unknown simply connected inclusion ω with regular
boundary Γ = ∂ω is located inside the domain D satisfying
dist(Σ,Γ) > 0, see figure.

To determine the inclusion ω, we measure for a given current distribution
g ∈ H−1/2(Σ) the voltage distribution f ∈ H1/2(Σ) at the boundary Σ.
Hence, we are seeking a domain Ω := D\ω and an associated harmonic
function u, satisfying the overdetermined boundary value problem

Σ ω

D

Ω

Γ
ν

Figure: Conceptual model

(IP)

⎧
⎨

⎩

−∆u = 0 in Ω,
u = 0 on Γ,

u = f and ∇u · ν = g on Σ.

Theorem 1 (Identifiability result, [BD10])
The Cauchy pair (f, g) ̸= (0, 0) uniquely determine Γ and u satisfying (IP).
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Minimizing J

Choice of descent vector [EH05]

Suppose 0 ̸≡ V = −Gν ∈ L2(Γ)d. Then, formally,
for sufficiently small t > 0 we have

J(Ωt) = J(Ω) + tdJ(Ω)[V] +O(t2)

= J(Ω) + t

∫

Γ
Gν ·V ds+O(t2)

= J(Ω)− t

∫

Γ
|V|2 ds+O(t2)

< J(Ω).

The choice V = −Gν as the descent vector is
straightforward and practical.

Different choice of descent vector [SKR22]
If f > 0 on Σ, then

G+ = ∂uN

∂ν
+ ∂uD

∂ν
> 0 on Γ.

Choosing

V = −G−ν = −
(
∂uD

∂ν
− ∂uN

∂ν

)
ν

we see that

J(Ωt) = J(Ω) + t

∫

Γ
G+G−ν ·V ds+O(t2)

= J(Ω) + t

∫

Γ
G+
︸︷︷︸
> 0

|V|2 ds+O(t2)

< J(Ω).
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Boundary Variation Algorithm

Algorithm
1. Initialization: Fix a small ∆t > 0 and choose an initial shape Γ0.
2. Iteration: For k = 0, 1, 2, . . .:

2.1 Solve (D) and (N) on Ωk .
2.2 Set Vn,k := −

(
∇uD,k · νk −∇uN,k · νk

)
on Γk .

2.3 Set Γk+1 = {x+∆tVk(x) | x ∈ Γk}.
3. Stop Test: Repeat Iteration until convergence.

Let T > 0, NT > 0 be an integer, and ∆t := T/NT .

For each k = 0, 1, · · · , NT , let
• tk = k∆t,
• Ωk ≈ Ω(k∆t),
• Γk ≈ Γ(k∆t),
• uD,k ≈ uD(·, k∆t),
• uN,k ≈ uN(·, k∆t).

Then, given Γ0, the previous algorithm reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆uD,k = 0, in Ωk

uD,k = f, on Σ,
uD,k = 0, on Γk

−∆uN,k = 0, in Ωk

∇uN,k · νk = g, on Σ,
uN,k = 0, on Γk

Vn,k = − (∇uD,k · νk −∇uN,k · νk) on Γk

Γ(0) = Γ0,
8 / 50
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Comoving Mesh Method (CMM) [SKR22, SRK24]
(FE scheme for general MBP in 2d/3d)



Domain Variation Algorithm

1. Initialization: Fix a small ∆t > 0 and choose an initial shape Ω0.

2. Iteration: For k = 0, 1, 2, . . .:
2.1 Solve (D) and (N) on Ωk .
2.2 Compute Vk ∈ V (Ωk)d by solving the variational equation

a(Vk,ϕ) =
∫

Γk

G̃kνk · ϕ ds, ∀ϕ ∈ V (Ωk)d,

where V (Ωk) := {ϕ ∈ H1(Ωk) | ϕ = 0 on Σ} and a is a bounded and coercive bilinear form on V (Ωk)d.
2.3 Set Ωk+1 = {x+∆tVk(x) | x ∈ Ωk}.

3. Stop Test: Repeat Iteration until convergence.

Remark 1

In step 2.2, we can choose either G̃ = G or, if f > 0, G̃ = G−.
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A numerical experiment: classical versus proposed method

Note Here, we used a non-uniform time step size to clearly highlight the potential of taking G̃ = G−. In
fact, we calculate the step size at each time step using a backtracking line search:

∆tk = c
J(Ωk)

|Vk|2H1(Ωk)
,

where c > 0 is a scaling factor.
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Statement of the Main Problem
For fix T > 0, and given f ≥ 0 (f ̸= 0), g ≥ 0(g ̸= 0), Σ, and Γ0, we observe that, in the continuous
setting, the boundary variation algorithm yields the following moving boundary problem:

(HSP)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆uD(x, t) = 0, x ∈ Ω(t), t ∈ [0, T ],
uD(x, t) = f(x), x ∈ Σ,
uD(x, t) = 0, x ∈ Γ(t), t ∈ [0, T ],

−∆uN(x, t) = 0, x ∈ Ω(t), t ∈ [0, T ],
∂
∂ν

uN(x, t) = g(x), x ∈ Σ,
uN(x, t) = 0, x ∈ Γ(t), t ∈ [0, T ],

Vn(x, t) = −
[
∂
∂ν

uD(x, t)−
∂
∂ν

uN(x, t)
]

x ∈ Γ(t), t ∈ [0, T ],

Γ(0) = Γ0,

where Vn(x, t) represents the velocity of movement of Γ(t) in the direction of the normal ν(t) to Γ(t), for
all t > 0.
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Motivation
• Shape inverse problems are typically solved numerically through shape optimization; see

[RS96, EH05].
• The Hele-Shaw-like system (HSP) is a specific case of the general conductivity reconstruction

problem which is severely ill-posed in the sense of Hadamard [EH05].
• Despite this, it has been widely studied both theoretically and numerically; see

[EH05, Afr22, AK02, AIP95, AV96, BD10, CK05, HR98, Isa66].
• The existence and uniqueness of the solution from boundary measurement data have been examined

by several authors; see [AIP95, AV96, BD10, Isa66].
• Shape optimization reformulations of shape inverse problems are rarely examined from different

theoretical and numerical perspectives.
• This investigation aims to rigorously analyze the existence, uniqueness, and continuous

dependence on the data of the classical solution of (HSP) in a short-time horizon.
• Little to no work has been done on the well-posedness of the shape optimization problem from which

(HSP) is derived, especially in the direction of our study.
• The system (HSP), derived from a shape optimization context and originating from a shape inverse

problem, is novel.
• Our analysis, inspired by Bizhanova and Solonnikov [BS00] and Solonnikov [Sol03], offers a new

perspective.
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Preliminaries: notations
• D ⊂ Rd be a bounded (simply connected) domain D with boundary ∂D = Σ
• A2+α :=

{
Γ = ∂ω | ω ⊂ D, ω is a simply connected bounded domain and ∂ω ∈ C2+α

}
.

• For Γ ∈ A2+α, Ω(Γ) denotes an annular domain in Rd with boundary ∂Ω(Γ) = Γ ∪ Σ.
Given f ∈ C2+α(Σ) and g ∈ C1+α(Σ), uD(Γ) and respectively solves

(D)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uD ∈ C2+α(Ω(Γ))
−∆uD = 0, in Ω(Γ)

uD = f, on Σ,
uD = 0, on Γ.

(N)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uN ∈ C2+α(Ω(Γ))
−∆uN = 0, in Ω(Γ)

∇uN · ν = g, on Σ,
uN = 0, on Γ.

Hereafter, unless otherwise stated, we assume Γ ∈ A2+α.
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Preliminaries: quasi-normal vectors on Γ and a diffeomorphic map

Definition 2
We say that a vector field N is quasi-normal on Γ ∈ A2+α, inheriting the regularity of Γ, if

(1) N ∈ C2+α(Γ;Rd) and it is such that |N(ξ)| = 1 and N(ξ) · ν(ξ;Γ) > 0 for all ξ ∈ Γ.

We let Iε0 := [−ε0, ε0] and fix a constant ε0 = ε0(Γ,N) > 0 such that the map

X : Γ× Iε0 −→ Γε0 ⊂ Rd, X(ξ, ρ) ,−→ ξ + ρN(ξ) ⊂ D,

is a C2+α-diffeomorphism, where

Γε := {X(ξ, r) := ξ + rN(ξ) | (ξ, r) ∈ Γ× Iε},

for ε > 0.

Proposition 1
There exists a constant ε0 > 0 such that

X ∈ Diffeo2+α(Γ× Iε0 ;D), D := X(Γ× Iε0).
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Preliminaries: a proposition
For fixed real numbers a, b where b > a, the scalar valued ρ is such that it belongs to the Banach space

R[a,b](Γ,N) :=
{
ρ : Γ× [a, b] → Iε0(Γ,N) | ρ ∈ C([a, b];C2+α(Γ)) ∩ C1([a, b];C1+α(Γ))

}
.

We also introduce the set
R0(Γ,N) :=

{
ρ ∈ C2+α(Γ) | |ρ(ξ)| ! ε0(Γ,N), ∀ξ ∈ Γ

}
.

For ρ ∈ R(Γ,N), it can be shown that S(ρ) := {X(ξ, ρ) | ξ ∈ Γ} is a C2+α boundary.

Proposition 2

There exists ε1 := ε1(Γ,N) ∈ (0, ε0(Γ,N)] such that S(ρ) ∈ A2+α holds for ρ ∈ R1(Γ,N), where

R1(Γ,N) := {ρ ∈ R0(Γ,N) | |ρ(ξ)| ! ε1, |∇Γρ(ξ)| ! ε1, ∀ξ ∈ Γ} .

The proof of the above proposition is based on the following lemma.

Lemma 3

Let k ∈ N, α ∈ [0, 1), and Ω ⊂ Rd be an open bounded set with Ck+α boundary. Let φ ∈ Ck+α
0 (Ω) and

consider ϕ(x) = x+ φ(x), x ∈ Ω. Assume that maxx∈Ω ∥∇⊤φ(x)∥ < 1. Then, det(∇⊤ϕ) > 0 and
ϕ ∈ Diffeok+α(Ω,Ω); i.e., the map ϕ : Ω → Ω is a Ck+α-diffeomorphism.
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Preliminaries: a quasi-stationary moving boundary problem
For ρ ∈ R[a,b](Γ,N), we define the moving boundary

(2) M(ρ, [a, b]) :=
⋃

t∈[a,b]
S(ρ(t))× {t},

with normal velocity Vn(t) = Vn(·, t) ∈ C0(S(ρ(t))) where
Vn(x, t) := ρt(ξ, t)N(ξ) · ν(x; S(ρ(t))), x = ξ + ρ(ξ, t)N(ξ) ∈ S(ρ(t)), ξ ∈ Γ.

We define the set of moving boundaries

M[a,b](Γ,N) :=
{
M(ρ, [a, b]) ⊂ Rd × R | ∃ρ ∈ R[a,b](Γ,N) such that (2) is satisfied

}
.

Problem 4

Given Γ◦ ∈ A2+α, f ∈ C2+α(Σ), and g ∈ C1+α(Σ), find T > 0 and M =
⋃

0!t!T Γ(t)× {t} such that

(3)

⎧
⎪⎨

⎪⎩

Vn(t) = −
[
∂
∂ν

uD(Γ(t))−
∂
∂ν

uN(Γ(t))
]

on Γ(t), (0 ! t ! T ),

Γ(0) = Γ◦,

where uD(Γ(t)) and uN(Γ(t)) are defined by (D) and (N).
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Preliminaries: definition of solution

Definition 5

We say M =
⋃

0!t!T Γ(t)× {t} ⊂ Rd × R a solution of Problem 4, if for Γ(0) = Γ0, there exists a
collection of closed intervals {Ik}nk=1 such that

⋃n
k=1 Ik = [0, T ], and for each k, there exists tk ∈ Ik,

Γk ∈ A2+α, and quasi-normal Nk on Γk such that

M
∣∣
Ik

∈ MIk (Γk,Nk) where M
∣∣
Ik

=
⋃

t∈Ik

Γ(t)× {t},

is a solution of

Vn(t) = −
[
∂
∂ν

uD(Γ(t))−
∂
∂ν

uN(Γ(t))
]

on Γ(t) for t ∈ Ik, for each k = 1, . . . , n,

where uD(Γ(t)) and uN(Γ(t)) are defined by (D) and (N), respectively.

Remark 2
We note that the definition of Vn does not depends on the choice of Γk and Nk.
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Preliminaries: a question and a lemma
Question: suppose M[0,T ] is a solution to (HSP), then is it true that M[t∗,T ] is also a solution to (HSP) for
t∗ ∈ [0, T ]?

The next lemma answers this question affirmatively.

Lemma 6
Let

• Γ ∈ A2+α,
• N be a quasi-normal vector on Γ,
• M =

⋃
a!t!b Γ(t)× {t} ∈ M[a,b](Γ,N),

• t∗ ∈ [a, b], and
• N∗ be quasi-normal on Γ(t∗).

Then, there exists a δ > 0 such that, setting I∗ := [a, b] ∩ [t∗ − δ, t∗ + δ], we have

(4) M
∣∣
I∗

∈ MI∗(Γ(t∗),N∗).
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Preliminaries: equivalent definition of solution

Definition 7

We say M =
⋃

0!t!T Γ(t)× {t} ⊂ Rd ×R a solution of Problem 4, if for all t∗ ∈ [0, T ], there exist a < b
and δ > 0 such that [t∗ − δ, t∗ + δ] ∩ [0, T ] ⊂ [a, b] ⊂ [0, T ] and there exists a quasi-normal vector N∗ on
Γ(t∗) such that

M[a,b] ∈ M[a,b](Γ(t∗),N∗) where M[a,b] :=
⋃

a!t!b

Γ(t)× {t},

and uD(Γ(t)) and uN(Γ(t)) defined by (D) and (N) solve Problem 4.

Remark By the previous lemma, observe that for all t ∈ [0, T ], there exists a δ(t) > 0 such that
[t− δ(t), t+ δ(t)] ∩ [0, T ] ⊂ [a, b] ⊂ [0, T ], and there exists a quasi-normal vector N on Γ(t) such that
M[a,b] ∈ M[a,b](Γ(t),N), and uD(Γ(t)) and uN(Γ(t)) defined by (D) and (N) solve (3). Now, we observe
that

∅ ̸= O(t) :=

⎧
⎪⎨

⎪⎩

(t− δ(t), t+ δ(t)) ∩ (0, T ) for t ∈ (0, T ),
[0, δ(0)) for t = 0,
(t− δ(t), T ] for t = T.

Note that O is open in [0, T ] and
⋃

t∈[0,T ] O(t) = [0, T ].
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Notations (1/2)
For l ∈ R+, C0([0, T ];Cl(Ω)) denotes the space of continuous functions with respect to

(x, t) ∈
{
(x, t) | t ∈ [0, T ], x ∈ Ω

}

with the finite norm
max
0!t!T

|u(·, t)|(l)Ω ,

where

|u|(l)Ω :=C[l],l−[l](Ω)= |u|[l],l−[l];Ω =
∑

|j|<l

max
Ω

|Dju(x)|+ [u](l)Ω ,

[u](l)Ω := [u][l],l−[l];Ω =
∑

|j|=[l]
max
x,x̂∈Ω

|Dju(x)−Dju(x̂)|
|x− x̂|l−[l] .

The spaces C0([0, T ];Cl(Σ)) and C0([0, T ];Cl(Γ)) are introduced in a similar manner.

For pair of functions ϕD and ϕN, we will extensively use the following special notations (or operators):

ϕDN := ϕD − ϕN and ϕND := ϕN − ϕD.

For example, we write uDN = uD − uN and uDN(Γ) = uD(Γ)− uN(Γ).
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Notations (2/2)
Let a, b be fixed real numbers such that b > a, k ∈ N ∪ {0}, α ∈ (0, 1), and Ξ ∈ {Ω,Γ,Σ}. For
well-defined functions ϕ, u, v, f, g, ρ, etc, we introduce the following norms for economy of space:

|ϕ|(k+α)
Ξ; [a,b] := max

a!τ!b
|ϕ(·, τ)|(k+α)

Ξ ,

|ϕ|∞Ξ; [a,b] := max
a!τ!b

max
Ξ

|ϕ(·, τ)| ,

∥(u, v)∥(k+α)
Ξ; [a,b] := |u|(k+α)

Ξ; [a,b] + |v|(k+α)
Ξ; [a,b] = max

a!t!b
|u(·, τ)|(k+α)

Ξ + max
a!t!b

|v(·, τ)|(k+α)
Ξ ,

∥ϕD,N∥(k+α)
Ξ; [a,b] := ∥(ϕD,ϕN)∥(k+α)

Ξ; [a,b] ,

∥(f, g)∥(2+α)
Σ; [a,b] := max

a!τ!b
|f(·, τ)|(2+α)

Σ + max
a!τ!b

|g(·, τ)|(1+α)
Σ , |||(f, g)||| := ∥(f, g)∥(2+α)

Σ; [0,t] ,

|||ρ|||(k+α)
Ξ; [a,b] := max

a!τ!b
|ρ(·, τ)|(k+α)

Ξ + max
a!τ!b

∣∣∣∣
d
dτ
ρ(·, τ)

∣∣∣∣
(k−1+α)

Ξ
,

|||ρ|||(k+α)
Ω,Γ; [a,b] := max

a!τ!b
|ρ(·, τ)|(k+α)

Ω + max
a!τ!b

∣∣∣∣
d
dτ
ρ(·, τ)

∣∣∣∣
(k−1+α)

Γ
.

23 / 50



Main Theorem (1/2)

Theorem 8

Let the following assumption be satisfied:
(A1) For some α ∈ (0, 1),

Σ, Γ = Γ◦ ∈ C2+α, f ∈ C0([0, T ];C2+α(Σ)), f > 0, g ∈ C0([0, T ];C1+α(Σ)), g > 0,

such that
∂
∂ν

(uDN(Γ◦)) > 0,

where uD and uN respectively solves (D) and (N) in Ω(Γ◦).
Then, there exists a unique solution Γ(t), uD(x, t), and uN(x, t) to (HSP) defined on some small
time-interval I⋆ = [0, t⋆], where t⋆ < T .
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Main Theorem (2/2)

Theorem 8 (continuation)
The free surface Γ(t) is described by the equation

(5) x = ξ + ρ(ξ, t)N(ξ), ξ ∈ Γ,

where ξ is the local coordinate on the surface Γ and N is a smooth vector field on Γ such that
N · ν◦ " ν⋆ > 0, where ν◦ is the unit normal vector to the surface Γ directed inward the domain Ω(Γ).

The function ρ ∈ C0(I⋆;C2+α(Γ)) has extra smoothness with respect to the variable t; namely,
ρt ∈ C0(I⋆;C1+α(Γ)). Meanwhile, the functions uD(x, t) and uN(x, t) are defined in Ω(t) for t ∈ I⋆ and
both belong to the space C0(I⋆;C2+α(Ω(t))).

Moreover, the following estimate hold

(6) ∥uD,N∥(2+α)
Ω; [0,t] + |||ρ|||(2+α)

Γ; [0,t] ! c ∥(f, g)∥(2+α)
Σ; [0,t] ! c |||(f, g)|||.

for some constant c > 0, for all t ∈ I⋆.
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Remarks on Assumption (A1)

Lemma 9

Let Ω ⊂ Rd, of class C2+α, be an open bounded connected set with non-intersecting boundaries Γ and Σ.
Assume that v ∈ C2+α(Ω) ∩ C0+α(Ω) and

−∆v = 0 in Ω, v = 0 on Γ, ∂v
∂ν

> 0 on Σ.

Then, v > 0 in Ω.

Proposition 3

Let Ω = D \ ω ⊂ Rd, of class C2+α, be an open bounded connected set with non-intersecting boundaries
∂ω = Γ ∈ A2+α and Σ = ∂D. Assume that ∂ω⋆ = Γ⋆ ∈ A2+α is the exact interior boundary that satisfies
(IP) and ω strictly contained ω⋆ (i.e., Γ lies entirely in the interior of Ω⋆ = D \ ω⋆). Let f ∈ C2+α(Σ) and
g ∈ C1+α(Σ). Then, the functions uD(Γ) and uD(Γ) satisfying (D) and (N), respectively, satisfy the
following condition

uD > uN in Ω.
Consequently,

∂
∂ν

(uD − uN) > 0 on Γ.
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Uniqueness of solution
Given the short-time existence of solution to (HSP), we can also prove the uniqueness of solution to the
system.

Theorem 10
A solution of Problem 4 is unique.

Proof.
Assume that Mi :=

⋃
Γi(t)× {t}, i = 1, 2, solves Problem 4, We suppose M1 ̸= M2. Then, there exists

t∗ ∈ [0, T ) and a sequence {tk}∞k=1 ∈ (t∗, T ] such that

(7)

⎧
⎪⎪⎨

⎪⎪⎩

M1
∣∣
[0,t∗]

= M2
∣∣
[0,t∗]

,

T " t1 > t2 > · · · > t∗, where lim
k→∞

tk = t∗, and

Γ1(tk) ̸= Γ2(tk), for k = 1, 2, . . ..

Since Γ(t∗) := Γ1(t∗) = Γ2(t∗) satisfies the conditions in Theorem 8, there exists t∗∗ ∈ (t∗, T ] such that
there is a unique Γ(t) for t ∈ [t∗, t∗∗]. This contradicts the last two lines in (7). Thus, M1 and M2.
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Sketch of Proof of the Main Result
To prove the main result, we proceed with the following main steps:

Step 1. First, we reformulate the problem onto a fixed domain, and we establish the classical
solvability of the state problems on the fixed domain.

Step 2. Then, we separate the linear components of the primary and dynamic boundary conditions
of the nonlinear problem from Step 1, placing all nonlinear components on the left-hand
side of the resulting equation.

Step 3. Following that, we demonstrate the existence of a classical solution to the linear problem
associated with the system from Step 2 and obtain a key estimate for the solutions. The
approach involves using the method of successive approximations or the Schauder
method (refer to [GT01, p. 74] or [Vol14, Sec. 1.1.1, p. 124]).

Step 4. We then establish the uniqueness of the solution by comparing two solutions and proving
they are identical using the estimate from Step 3.

Step 5. Finally, by utilizing certain interpolation inequalities and the classical solution to the linear
problem proven in Step 3, we demonstrate the short-time existence of a classical solution
to the nonlinear problem derived from Step 1 through the method of successive
approximations. The proof concludes by transforming the fixed domain back to the moving
domain.
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Summary
• We revisited a shape optimization reformulation of a shape inverse problem and proposed an efficient

numerical approach for solving it.

• Additionally, we studied the existence, uniqueness, and continuous dependence of a classical solution
to a Hele-Shaw-like system derived from this formulation.

• We reiterate that little to no work has been done with respect to the well-posedness of the shape
optimization problem related to the system studied here, specifically in the present research direction.

• The system examined in this study is novel. Hence, the analysis carried out in this work, inspired by
Bizhanova and Solonnikov, offers a fresh perspective.

• We anticipate that the same analysis could be applied to other Hele-Shaw-like systems resulting from
shape optimization reformulations of a shape identification problem.

Thank you for your kind attention.
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