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Each surface atom breaks the bonds with its nearest
(horizontal) neighbors at a random (exponentially distributed)
time and then jumps (uniformly) to one of its neighboring sites.

The rate at which those bonds are broken depends on the
energy barrier that must be overcome in breaking them.... but
atoms with lots of horizontal neighbors will move infrequently
and neighbors with no (adatoms) or few horizontal neighbors
will move more frequently.
Macroscopically you might expect convex regions to move
more slowly than concave regions.
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We model the crystal surface as an indexed set of integer
valued random variables hN(t , α) ∈ Z where α ∈ Td

N (the
d-dimensional torus).

The jumps:

hN → JαJβhN add an atom at β and subtract one from α

where

JαhN(γ) =

{
hN(α)− 1, γ = α

hN(γ), γ 6= α
and JαhN(γ) =

{
hN(α) + 1, γ = α

hN(γ), γ 6= α

Now we need the rates...
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We need an estimate of the energy barrier that must be
overcome in breaking an atom’s neighbor bonds.

If we define the total energy of the surface to be:

H(hN) =
∑

α∈TN

∑

i≤d

V (∇+
i hN(α))

where

∇+
i g(α) = g(α + ei)− g(α) and ∇−i g(α) = g(α)− g(α− ei)

then the (symmetrized) change in energy that results from
removing the atom at site α :

nα(hN) =
1
2

∑

i≤d

(
V (∇+

i JαhN(α))− V (∇+
i hN(α))

+ V (∇−i JαhN(α))− V (∇−i hN(α))
)
.
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The rate at which the atom at site α breaks its bonds and
becomes free to move is

e−2Knα(hN )

The rate at which an atom breaks its bonds and moves to any
particular neighbor is

rN(α) =
1

2d
e−2Knα(hN )

The generator is

AN f (hN) =
∑

α,β∈Td
N

|α−β|=1

rN(α)
(

f (JβαhN)− f (hN)
)
.
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h(t , ·) is reversible with respect to the distribution

ρm
N ∝

{
e−K

∑
α∈TN

∑
i≤d V (∇+

i hN (α))
, if

∑
α∈TN

hN(α) = m
0, otherwise

with m =
∑

α∈TN
hN(0, α)

Our objective is to characterize the non-equilibrium continuum
(large N) behavior of the surface.
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But first...

This is oversimplified but physically reasonable:

The atoms mostly jiggle around on their sites but eventually
climb out of the potential well (from bonds with neighbors)
confining them. The escape event is rare and it’s reasonable to
assume that

1 the rate is dominated by the change in energy and

2 the projection of the system onto the site occupation
number remains Markovian.
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A couple of examples
1 Suppose V (z) = |z|. Then

nα(hN) + 2d−1 =
∑

β∈Td
N

|α−β|=1

1(hN (α)≤hN (β)),

i.e. up to an additive constant (a time rescaling), the
generalized coordination number is the number of bonds
that need to be broken to free the atom at lattice site α.

2 Suppose V (z) = z2. Then

nα(hN)− 2d =
∑

i≤d

∇+
i hN(α)−∇−i hN(α),

i.e. up to an additive constant, the generalized coordination
number is the discrete Laplacian of the surface at lattice
site α.
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Why this model?

This model is far from perfect:
1 no substrate interactions (e.g. elasticity),
2 no defects (e.g. vacancies),
3 many systems require modeling the electronic structure

(probably via DFT) to get correct barrier heights for
estimating jump rates,

4 . . .

But it is close to models used in very large scale simulations.
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These models have not been considered by mathematicians
but close relatives have been studied:

Funaki and Spohn (1997) studied the hydrodynamic limit of

dhN(t , α) = −∂H(hN)

∂hN(α)
dt +

√
2K−1dW (t)

where here hN(t , α) ∈ R
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They show that if

h̄N(t , x) = N−1hN(N4t , α) where Nx ∈ ∩d
i=1

[
αi −

1
2
, αi +

1
2

)

then h̄N converges to the solution of the PDE

∂th = K div [σC(∇h)]

The surface tension is defined by σC(u) = ∇FC(u) where

FC(u) =
1
K

sup
σ∈Rd

{
σTu − log

∫

w∈Rd
e−K

∑
i≤d V (wi )+KσTwdw

}

u =

∫
w e−K

∑
i≤d V (wi )+Kσ(u)Twdw

∫
e−K

∑
i≤d V (wi )+Kσ(u)Twdw
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Nishikawa (2002) extended Funaki and Spohn’s approach to

dh(t , α) = ∆
∂H(h)

∂h(α)
dt +

√
−2K−1∆dW (t)

where
∆g(α) =

∑

i≤d

∇+
i g(α)−∇−i g(α).

He proved that h̄N converges to the solution of the PDE

∂th = −K ∆ [div [σC(∇h)]]
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Recent work of Armstrong-Wu (2019) shows that σC ∈ C2,β for
some β > 0. What can we say about σD??
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This last overdamped Langevin equation for continuous height
variables can be derived from the KMC model by introducing a
vanishing lattice constant.

Replace V (z) by V (az), rescaling time appropriately, and
taking a→ 0.

One can then apply Nishikawa’s result to make an approximate
statement about the scaling limit of the KMC equations.

This was pointed out by Haselwandter and Vvedensky.
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The small lattice constant limit sacrifices interesting features.

For example, if V is symmetric and if hN is a solution of the
SDE then −hN is also a solution.

Remember that in the KMC model convex regions are much
stickier than concave regions.
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Krug, Dobbs, and Majaniemi studied the evolution of a model
very similar to our KMC models in 1D when V (z) = |z|

They first argue for

∂th = −K ∆ [div [σD(∇h)]]

with σD(u) = ∇FD(u) where

FD(u) =
1
K

sup
σ∈Rd



σ

Tu − log
∑

z∈Zd

e−K
∑

i≤d V (zi )+KσTz
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Then at the end of the paper they give arguments supporting

∂th = ∆
[
e−K div[σD(∇h)]

]

As they point out... this PDE gives the first PDE when curvature
of the surface is small.
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M-Weare (2013): The correct limit depends on the scaling
regime.

And the standard scaling regime may tell us less about the
physics.
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In the h ∼ N−1hN , s ∼ N4t , x ∼ N−1α regime we argue for

∂th = − K
2d

∆ [div [σD(∇h)]]
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Figure: V = z2 for T = 1e − 1 at K = 1.5
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Now suppose that for some p > 1

V (κu) = κpV (u) for all κ > 0

Letting q = p
p−1 and scaling like

h ∼ N−qhN s ∼ Nq+2t x ∼ N−1α

we argue that h̄N converges to the solution of

∂th =
1

2d
∆
[
e−K

∑
i≤d V ′(∂xi h)∂2

xi
h
]
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For the rough pde with p = 1 and the continuous surface
tension, jointly with Jian-Guo Liu, Jianfeng Lu and Dio
Margetis (2019) we derived the exponential PDE in the
p = 1 case and studied facet dynamics for that model. This
is related to the work of Giga-Kohn (2011), Giga-Giga
(2010) on Total Variation flows.
The PDE takes the form

∂th = ∂xxe−∂x

(
∂x h
|∂x h|

)
, h(x ,0) = h0(x) ,
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For a non-exponential version of this model,

∂th = −∂xx∂x

(
∂xh
|∂xh|

)
, h(x ,0) = h0(x) ,

Giga-Giga (2010) proved the existence of shock-like
solutions satisfying

{
ḣf = − 3

x3
f (t)

,

ẋf (h0(xf )− hf ) = −3x−2
f .
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There are implicit facet dynamics that can be derived and
relate to a jump forming at the point of minima and
maxima.
Numerical methods also need to be carefully developed to
capture jumps.
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In this case, the energy supports the formation of jump
discontinuities. The front of a facet (xf ,hf ) can be shown to
obey the Differential-Algebraic system of equations





Ẋf = ẋf F (Xf )
1−xf F ′(Xf ) ,

ḣf = −2F (Xf )2 ,

ẋf (h0(xf )− hf ) = −2xf F (Xf )2 ,

where the variable Xf is an extra variable included to
enforce an algebraic condition.
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Figure: Snapshots of evolving surface height profile, h(x , t), under
initial data h(0, x) = sin(x) (top panel) by fourth-order total variation
flows given by: exponential PDE with regularization parameter
ν = 10−3 on a time scale T = 10−4 (bottom left panel); and by PDE
with regularization parameter ν = 10−3 on a time scale T = 10−2

(bottom right panel).
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Figure: (Color Online) Plots of facet height hf (t) versus time, t (top left
panel), facet position xf (t) versus t (top right panel) and facet height
versus facet position (xf (t), hf (t)) (bottom panel). The initial data is
taken from the PDE evolution as xf (t0) = π

15 , hf (t0) = .98879899 with
t0 = 5× 10−7. The numerical experiments for the ODEs and PDE are
then compared up to time T = 10−3.
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These PDEs can be related to the total variation flow in
H−1 for the given energy.

E [h] = γ

∫

Ω

(
|∇h|+ g

3
|∇h|3

)
dx (Ω ⊂ R2) ,

For g > 0, due to presence of the (less singular) term
|∂xh|3 in the surface energy, the solution to this PDE no
longer develops jumps in the height profile. This is
expected from other studies in the non-weighted H−1 total
variation flow.
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Recent progress on Exponential PDE with p = 2 by J.G.
Liu, Y. Gao, J. Lu, X. Xu, R. Granero-Belinchon, M.
Magliocca, R. Strain, D. Ambrose, JLM, ....
There are three main approaches:
1. A small data theory in the Weiner Algebra space
(Granero-Belinchon, Magiliocca; Liu-Strain; Ambrose,
GLLM).
2. A large data weak solution theory similar to the entropy
solutions of Bernis-Friedman (Liu-Xu, GLLM).
3. A small data, quasilinear approach for the u equation,
see certain recent results of Quoc Hung Nguyen on
quasilinear parabolic models.
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One can even include 2nd order effects of evaporation and
deposition to arrive at at PDE of the form:

∂th = ∆e−∆h + (1− e−∆h).

See Gao-Liu-Lu-M (2020).
Define

u := e−∆h.

The equation can be formally recast as

∂tu = −u∆[∆u + (1− u)].
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For weak solutions, use a regularized method to first prove
the existence and strict positivity for regularized solution uε
to a properly modified equation below, then take limit
ε→ 0. For 0 < α < 1, the regularization of the u equation
we consider is




∂tuε = − u1+α
ε

uαε + εα
(∂4

x uε − ∂2
x uε), for t ∈ [0,T ], x ∈ T;

uε(0, x) = u0(x) + ε, for x ∈ T.
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Singularity Formation for p=2

Using the change of variables u = e−∆h, the 4th equations
of motion become

ut = −u∆2u.

There is a related 2nd order model of the form

ut = u∆u.

Note, one of these looks a bit like the thin-film equation
and one looks a bit like the porous medium equation, but
without gradient structure!
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Self-similar solutions that are quartic in the 4th order case
and quadratic in the 2nd order case can be found, but they
do not behave well with respect to boundary conditions.
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Singularity Formation for p=2, 4th order

4th Order Singularity Formation

4th Order Singularity Formation Zoom In
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Almost Singularity Formation for p=2, 2nd order

2nd Order Avoided Singularity
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Note, setting v = ux , we get

∂tv = vvx + uvxx ,

which resembles an Euler equation with variable coefficient
viscosity. It was observed by Tarek Elgindi that using the
maximum principle this solution cannot form a true
singularity. With David Ambrose and Doug Wright, we are
now pursuing this as a means of capturing both the
transition layer between self-similar profiles and trying to
build solutions that almost form singularities in the 2nd
order case and do indeed form singularities in the 4th
order problem.
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With Yuan Gao, Jian-Guo Liu, Jianfeng Lu and Anya
Katsevich (2021), we considered Metropolis-style rates
and analyzing dynamics in comparison to the Adatom
KMC models. These rates have some distinct differences
and a temperature dependence in the form of the limiting
PDEs can be seen. We focus here on the case p = 2 as
many calculations become more explicit. The PDE limit
proposed here is of the form

∂th(t , x) = ∂x

(
e[−∂3

x h(t ,x)] − e[∂3
x h(t ,x)]

)
.

This is NOT quite the exact limit you get from the KMC
system, but it is close as the temperature gets large. See
the works by Katsevich exploring this (2022,2023).
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PDE models

Recall, we are generally interested in the models we
consider of the form:

ht = ∆e−∆ph

for ∆p the p-Lapalcian for p ≥ 1 given by the
Euler-Lagrange equation for the surface energy

E(h) =
1
p

∫
|∇h|pdx .
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Gradient Flow Framework

Recently, with Craig, Liu, Lu and Wang, we have
introduced a gradient flow structure numerical flow that
allows one to numerically solve

ht = ∆e−∆1h

using the FORMAL gradient flow structure

ht +∇ ·
(

M(h)∇∂E
∂h

)
= 0,

M(h) = e−∆1h, E(h) = ‖∇h‖L1 .
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Gradient Flow Framework

Examples:
1 M(h) = 1→ H−1 gradient flow,
2 M(h) = h→W2 gradient flow,
3 M(h) non-negative, concave→ weighted W2 gradient flow

(See Carrillo-Lisini-Savaré-Slepcev (2009),
Dolbeault-Nazaret-Savaré (2009), Lisini-Matthew-Savaré
(2019), ...)

4 M(h) ∈ Lin(R`×d ,R`×d )→ gradient system (Liero-Mielke
(2013))

Our mobility is a nonlinear function of the 1-Laplacian and
hence falls well outside existing theories, but....
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Recent Advances with formal H−1 gradient flow for
p = 1 using ideas of Otto (2001), Giga-Giga (2010), ...

Suppose 0 ≤ M(h) ∈ L1(Td ). Define

∆hv = ∇ · (M(h)∇v).

We define the weighted Hilbert space

‖v‖2H1
h

=

∫

Td
M(h)|∇v |2dx = −

∫

Td
v∆hvdx .

We have the dual space:

‖ψ‖2
H−1

h
= −

∫

Td
ψ∆−1

h ψdx .

And the sub-differential

∂H−1
h
E

and gradient
∇H−1

h
E(ψ).
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Recent Advances with formal H−1 gradient flow for
p = 1 using ideas of Otto (2001), Giga-Giga (2010), ...

To get to a well-defined gradient flow, we require that the
time derivative of h(t) makes sense wrt ‖ · ‖H−1

h(t)
and that

M(h(t)) remains in L1 and ≥ 0 for all t .

∂th = −∇H−1
h
E(h)⇔ ∂th+∆h

∂E
∂h

= 0⇔ ∂th+∇·M(h)∇∂E
∂h

= 0
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Our proposed numerical method - Mobility

Even with a smooth profile, e−∆1h is not really well-defined
since ∆1(sin(x)) ∼ −2δπ/2(x) + 2δ3π/2(x).
Prior works have considered the mobility formulation of the
Total Variation flow, see (Giga-Giga (2010)) in which they
consider a Mobility that is of the form given by the Taylor
expansion ex ≈ 1 + x .
Given that the exponential breaks convex/concave
symmetry, we consider of mollified mobility. Given

φ ∈ C∞c (Td ), φ ≥ 0,
∫
φdx = 1, φε(x) = ε−dφ(x/ε),

we define
Mε(h) := e−φε∗∆1h.

Jeremy L. Marzuola crystal surface relaxation



Our proposed numerical method - Mobility

Even with a smooth profile, e−∆1h is not really well-defined
since ∆1(sin(x)) ∼ −2δπ/2(x) + 2δ3π/2(x).
Prior works have considered the mobility formulation of the
Total Variation flow, see (Giga-Giga (2010)) in which they
consider a Mobility that is of the form given by the Taylor
expansion ex ≈ 1 + x .
Given that the exponential breaks convex/concave
symmetry, we consider of mollified mobility. Given

φ ∈ C∞c (Td ), φ ≥ 0,
∫
φdx = 1, φε(x) = ε−dφ(x/ε),

we define
Mε(h) := e−φε∗∆1h.

Jeremy L. Marzuola crystal surface relaxation



Our proposed numerical method - Mobility

Even with a smooth profile, e−∆1h is not really well-defined
since ∆1(sin(x)) ∼ −2δπ/2(x) + 2δ3π/2(x).
Prior works have considered the mobility formulation of the
Total Variation flow, see (Giga-Giga (2010)) in which they
consider a Mobility that is of the form given by the Taylor
expansion ex ≈ 1 + x .
Given that the exponential breaks convex/concave
symmetry, we consider of mollified mobility. Given

φ ∈ C∞c (Td ), φ ≥ 0,
∫
φdx = 1, φε(x) = ε−dφ(x/ε),

we define
Mε(h) := e−φε∗∆1h.

Jeremy L. Marzuola crystal surface relaxation



Our proposed numerical method - time discretization

We consider a semi-implicit time stepping scheme similar
to for instance the JKO framework, see also
Murphy-Walkington (2019) in the Porous Medium Equation.

hn+1 ∈ arg min
h
E(h) +

1
2τ
‖h − hn‖2

H−1
hn

Or...
hn+1 − hn

τ
= −∇ ·

(
M(hn)∇ ∂E

∂hn+1

)
.

For the Total Variation Energy (L1), if hn ∈ D(E) and
0 ≤ M(hn) ∈ L1, there exists a unique solution to hn+1!!
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Our proposed numerical method - space discretization

We have the optimization

hn+1 ∈ arg min
h
E(h) +

1
2τ
‖h − hn‖2

H−1
hn

= arg min
h

(f (Kh) + g(h))

for Z ,H Hilbert spaces to be explained, f : Z → R,
g : H → R convex, K : H → Z a bounded linear operator.
Such schemes can be regularized and solved using a
primal-dual algorithm to solve inner and outer optimization
problems!! See (Laborde-Benamou-Carlier (2016),
Carrillo-Craig-Wang-Wei (2019)).

Jeremy L. Marzuola crystal surface relaxation



Our proposed numerical method - space discretization

We have the optimization

hn+1 ∈ arg min
h
E(h) +

1
2τ
‖h − hn‖2

H−1
hn

= arg min
h

(f (Kh) + g(h))

for Z ,H Hilbert spaces to be explained, f : Z → R,
g : H → R convex, K : H → Z a bounded linear operator.
Such schemes can be regularized and solved using a
primal-dual algorithm to solve inner and outer optimization
problems!! See (Laborde-Benamou-Carlier (2016),
Carrillo-Craig-Wang-Wei (2019)).

Jeremy L. Marzuola crystal surface relaxation



Our proposed numerical method - space discretization

For our case, we are motivated by the work of
Jacobs-Léger-Li-Osher (2019).
Gradient descent of smooth, convex function
F (u) = f (Ku) + g(u) with a unique min at u∗.
Convergence rate:

F (un) ≤ F (u∗) + 2LH
‖u∗ − u0‖2H

n + 4
.
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Our proposed numerical method - space discretization

Nesterov:

F (un) ≤ F (u∗) + 4LH
R2

(n + 2)2 + min
‖u−u0‖H≤R

(F (u)− F (u∗)).

Punchline: ‖u∗ − u0‖H = +∞ OK as long as

min
‖u−u0‖H≤R

(F (u)− F (u∗))→ 0

as R →∞.
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Our proposed numerical method - space discretization

The primal-dual algorithm is thus:

un+1 = arg min
u∈H

g(u) + (u,K T pn)H +
1
2τ
‖u − un‖2H,

pn+1 = arg max
p∈Z

−f ∗(p) + (Kun+1,p)Z −
1

2σ
‖p − pn‖2Z ,

pn = 2pn+1 − pn.

Cf. JLLO, Chambolle-Pock PDHG method, ...
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Our proposed numerical method - space discretization

For us, we get the following:
Outer time iteration:

hn+1 = arg min
h
E(h) +

1
2τ
‖h − hn‖2

H−1
hn
.

Inner time iteration applied using a PDHG algorithm
regularizing h with (1/2λ)H1 and φ with an (1/2σ)L2

regularizer ((σλ) ≤ 1):

hm+1 =
(τ
λ

∆hn ∆ + I
)−1 (τ

λ
∆hn ∆h(m) − τ∆hn∇ · φ(m) + hn

)
,

h
(m+1)

= 2h(m+1) − h(m),

φ(m+1) = (I + σ∂F ∗)−1(φ(m) + σ∇h
(m+1)

)

where

(I + σ∂F ∗)−1(u(x)) = min{u(x),1} sign(u(x)).
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What do we gain???

We do not invert the 1-Laplacian!

(DtD +
λ

τ
A−1(· − hn))−1 = (

τ

λ
ADtDu + hn).

Can choose λ quite large!
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Theorem [CMLLW 2020]

Let d = 1. Suppose the PDHG algorithm is initialized with

h(0) = hn, φ(0) = 0, where E(hn) <∞.

Then for all δ > 0, there exist M̃, λ, σ such that

F (h(M)−F (hn+1) ≤ δ, ∀M ≥ M̃, F (h) = E(h)+
1
2τ
‖h−hn‖2

H−1
hn
.
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Remarks

Extends to general M(h) provided M(hn),1/M(hn) ∈ L1

(Cancés-Gallouët-Todeschi (2019)).
The restriction d = 1 is to apply a Sobolev embedding.
Different integrability on 1/M required to go to higher
dimensions.
If ∇hn ∈ BV , the estimates are quantitative:
M̃ ∼ δ−2, λ ∼ δ−1, σ ∼ δ.

min
‖hn−h‖H≤R

(F (h)− F (hn+1))→ 0

as R →∞.
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Numerical Results: energy decrease
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement
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In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement

Jeremy L. Marzuola crystal surface relaxation



Numerical Results: convergence

16

Observations: 
- Error vs Nx: slightly sublinear convergence (low spatial regularity)  
- Error vs Nt: first order (semi-implicit Euler) 
- Internal time steps vs Nt: importance of selecting correct Hilbert space 

sinusoidal, (Nx = 200), (Nt = 10), σ = 0.0005, λ = 500, ε =0.05, T = 10-4
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Fig. 5. We compare the dynamics of the mobility given by equation (4.2) with a modified
mobility, in which sgn(x) is replaced by tanh(10x). While the original mobility more accurately
prevents facet formation at the local minimum, the modified mobility leads has smaller L1 norm and
requires fewer iterations to converge.

and facet formation at the minimum, which goes against the predicted dynamics of
the original equation: compare the plot on the left with the plot in the middle.
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Fig. 6. Left: Log-Log plot of relative L1 error vs. spatial grid size. Middle: Log-Log plot of
relative L1 error vs. external time step. Right: Comparison of number of time steps required to
meet stopping criteria for either Ḣ1 or L2 penalization. We observe superior performance for the
Ḣ1 penalization, especially as the spatial grid is refined.

Finally, in Figure 6, we analyze the rate of convergence of our method. We con-
sider sinusoidal initial data with the modified mobility, replacing sgn(x) with tan(10x),
✏ = .05 and T = 10�4. On the left, we examine how the relative L1 error depends
on the number of spatial gridpoints Nx for a fixed temporal discretization, Nt = 10.
For Nx = 16, 32, 64, 128, 256, 512, we plot kh(Nx) � h(2Nx)kL1 . We observe slightly
sublinear convergence, in line with the low spatial regularity of our solutions.

In the middle plot, we examine how the relative L1 error scales with the external
time step, used to define the semi-implicit scheme hn via ⌧ = T/Nt, for a fixed spatial
discretization Nx = 256. For Nt = 5, 10, 20, 40, 80, we plot kh(Nt) � h(2Nt)kL1 . We
observe approximately first order convergence, in agreement with the interpretation
of our scheme as a semi-implicit version of the minimizing movements scheme, which
can be thought of as a generalized Euler method.

In the right plot, we illustrate the importance of the choice of norms in our PDHG
algorithm, as explained in Remark 3.2. At the fully discrete level, existing work [9]
ensures that the PDHG algorithm would converge, even if the norm penalization in
the definition of h(m+1) was changed from a Ḣ1 norm to a L2 norm. At the level of
Algorithm 4.1, this would amount to modifying the computation of h(m+1) as follows:

h(m+1) =

✓
I +

�

⌧
A�1(· � hn)

◆�1 ⇣
h(m) � �Dt�(m)

⌘
.(5.1)
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Basic questions remain unanswered:
1 Can we prove that the exponential PDE has a solution (in

some space) for other p values, especially p = 1?
2 Can we prove convergence of the microscopic model to the

PDE in our scaling regimes? See recent work of Katsevich!
3 Can we establish finite time singularity formation in the 2nd

derivative in the case p = 2?
4 Full global strong solutions with g > 0? Convergence of

dynamics as g → 0?

There are also lots of great questions about the qualitative
behavior that can be asked w.r.t. wetting and self-similarity.
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