On asymptotic growth rate of solutions to level-set forced mean curvature flows with evolving spirals Hiroyoshi MITAKE (U. Tokyo) Joint work with H. V. Tran (UW - Madrison) § Introduction (Spiral crystal growth) S. Amelinctt (1951, Nature) Spiral appears in Crystal growth, Belousor-Zhabotinsky reaction etc

Crystal Browth by screw dislocation
Burton-Cabrera-Frank (1951) established a theory of crystal growth.
The front moves according to $V = V_{\infty} (P_c k + 1)$ on P_t
Here, V: outward normal velocity,
P_t : a curve in \mathbb{R}^2
K: curvature
given Norzo: velocity of straight line steps Pc 70: critical radius for the generation of two dimensional kernel from supersatulation. (2)

View from above A naive way to describe this behavior à to use the polar coordinate	· · · · · · · · · · · · · · · · · · ·
$ \left[\begin{array}{c} r \\ \hline \end{array} \\ \hline \end{array} \\ \left[\begin{array}{c} t \\ \hline \end{array} \\ \hline \end{array} \\ \left[\begin{array}{c} t \\ \hline \end{array} \\ \end{array} \\ \left[\begin{array}{c} t \\ \hline \end{array} \\ \left[\begin{array}{c} t \\ \hline \end{array} \\ \end{array} \\ \left[\begin{array}{c} t \\ \hline \end{array} \\ \left[\begin{array}{c} t \\ \end{array} \end{array} \\ \left[\begin{array}{c} t \\ \end{array} \\ \\ \left[\begin{array}{c} t \\ \end{array} \end{array} \\ \left[\begin{array}{c} t \\ \end{array} \\ \left[\begin{array}{c} t \\ \end{array} \end{array} \\ \left[\begin{array}{c} t \\ \end{array} \end{array} \\ \\ \\ \left[\begin{array}{c} t \\ \end{array} \end{array} \end{array} \\ \\ \left[\begin{array}{c} t \\ \end{array} \end{array} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \\ \left[\begin{array}{c} t \\ \end{array} \end{array} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \left[\begin{array}{c} t \\ \end{array} \end{array} \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \\ \\ \end{array} \end{array} \end{array} \\ \\ \\ \end{array} \end{array} \end{array} \end{array} $ \\ \\ \\ \\	π <i>⊋</i> [Γ
$\Leftrightarrow r \mathcal{U}_{t} = \frac{r \mathcal{U}_{rr}}{1 + r^{2} \mathcal{U}_{r}^{2}} + \mathcal{U}_{r} \left(\frac{2 + r^{2} \mathcal{U}_{r}^{2}}{1 + r^{2} \mathcal{U}_{r}^{2}} \right) + C \sqrt{1 + r^{2} \mathcal{U}_{r}^{2}} for (r,t) \in (0, \mathbb{M}) \times (q, \mathbb{M})$	
Ref. Giga-Ishimura-Kohsaka (2002)	
Forcadel-Imbert-Monneau (2012,2015)	
A phase-field approach: Karma-Plapp (1998) Ogiwara - Nakamura (2003)	· · · ·
If there are multiple spirals, the polar coordinate never work!	
· · · · · · · · · · · · · · · · · · ·	3

Level set approach based on the theory of viscosity solutions.
Setting
Let $\Omega \subset \mathbb{R}^2$ be a bounded C^2 domain, O_2
$W := \mathcal{D} \setminus \bigcup_{j=1}^{N} B(a_{j}, r)$
for ajER, r=o(small) with
$\overline{B(ai,r)} \cap \overline{B(a_{j},r)} = \emptyset \text{ if } i \neq j.$
Consider a sheet structure function
$ \Theta(x) = \sum_{j=1}^{\infty} m_j \operatorname{arg}(x - \alpha_j) \qquad \qquad$

Note that DO is single-valued. Indeed,
$\left[\mathcal{O}(\mathcal{X}) = \sum_{j=1}^{N} \frac{\mathcal{M}_{j} \left(-(\chi_{2} - \alpha_{j,1}, \chi_{1} - \alpha_{j,2}) - (\chi_{2} - \alpha_{j,1}) \right)}{ \chi - \alpha_{j} ^{2}} \right]$
Now, let's consider
$\left(N\right) \int \mathcal{U}_{t} = \left(div \left(\frac{D(u-\theta)}{ D(u-\theta) } \right) + C(x) \right) \left D(u-\theta) \right \text{ in } Wx(o, \infty)$
$D(u-\theta) \cdot h = 0$ on $\partial W \times (o, \omega)$
$\left(\begin{array}{ccc} \mathcal{U}(\cdot, 0) = \mathcal{U}_{0} \\ \end{array}\right)$
where (AI) $\begin{cases} U_0 \in C^2(\overline{W}) \text{ with } D(u_0 - \theta) \cdot M = \theta, \\ C \in C^1(\overline{W}) \text{ with } C(x) \neq 0 \forall x \in \overline{W}. \end{cases}$

Known Results Ohtsuka (2003), Goto - Nakagawa - Ohtsuka (2008) establish the well-posedness (Existence/Comparison principle). Numerical results by Ohtsuta - Tsai - Giga (2015, 2018) Smerba (2000) P. Smereka / Physica D 138 (2000) 282-30 $h(x,t) \approx \mathcal{N}(x,t)$ Figure 2. Example of level set for spirals and its height function. Fig. 5. This shows the height profile for the corresponding step-line shown in Fig. 4 at t = 51918 DOI: 10.1021/acs.cgd.7b00833 Cryst Growth Des 2018 18 1917-1929 Our interest is a behavior of the height function h -10 -10

Definition of h Let
$(\widehat{H})(\chi) := \sum_{j=1}^{N} M_{j} (\widehat{H})_{j} (\widehat{H})_{j} (\widehat{H})_{j}$
where (j) is the principal value of on j (),
$-\pi \in \mathcal{U}(x,t) - \left(\Theta(x) + 2\pi k(x,t)\right) < \pi.$
For ho > 0 (the unit height of step), define
$h(x,t) := \frac{ho}{2\pi} \left\{ (\hat{x},t) + 2\pi k(x,t) + \pi \operatorname{Sign} \left(u(x,t) - \left((\hat{x},t) + 2\pi k(x,t) \right) \right) \right\}$
$ \Rightarrow h(x,t) \stackrel{*}{\asymp} '' u(x,t) $

	Our goal. Want to understand
	(a) Existence of the asymptotic speed, that is,
• •	$\frac{a}{h(x,t)} \frac{h(x,t)}{t}$
· ·	(b) Qualitative (Quantitative properties
· ·	of the asymptotic speed.
· ·	
· · ·	
••••	\mathbb{R}

S Main Results $(N) \begin{cases} Ut = \left(div \left[\frac{D(u-\theta)}{D(u-\theta)} \right] + C(\pi) \right) p(u-\theta) \\ D(u-\theta) \cdot n = 0 \\ u(\cdot, 0) = U_0. \end{cases}$
Thm1 Assume (AI) There exists a constant $S_c \in [0, \infty)$
S.t. $\lim_{t \to +\infty} \frac{\max_{x \in \overline{w}} U(x,t)}{t} = S_c$
$\implies To show the existence of \lim_{t \to +\infty} \frac{u(x,t)}{t},$
it is important to the time-global Lipschitz
estimate of u.
$ \cdot \cdot$

Thm2. Assume (AI) holds, and
$(A_{12}) = 3 \delta_{12} > 0 = 5 t'$
$C(\pi)^{2} - 2 DC(\pi) - 2C_{0} C(\pi) - \frac{8C_{0}}{K_{0}} \ge 0$
where $C_0 := \max \{C_1, \frac{1}{r}\},$
$C_1 := \max \left\{ -\lambda \right\} $ λ is a curvature at $x_0 \in \mathcal{M} \right\}$
Then $\exists L = L(\ u_0\ _{C^2}, \ D\theta\ _{C^1}, \ C\ _{C^1}, C_0, K_0, \delta) > 0$
s.t. $\ U_t\ _{L^{\infty}(W \times [0,\infty))} + \ DU\ _{L^{\infty}(W \times [0,\infty))} \leq L$.
Rem. If (A2) doeo NOT hold, ^I example to show that u is not time global Lip. conti. (0)

Thm 3. Assume (A1), (A2) hold, and let $S_c \in [0,\infty)$ be the constant given by Thm 1. Then, $\frac{U(x,t)}{t} \rightarrow S_{c} \text{ uniformly for } x \in W \text{ as } t \rightarrow t \infty$ Moreover, $\frac{h(x,t)}{t} \rightarrow \frac{hoSc}{2\pi}$ uniformly for $x \in W$ as $t \rightarrow +\infty$ Comment. Scip an important object to be studied more deeply.

Example Assume $N = 2$, $\alpha_1 = (1, 0)$,	$\Omega_2 = (-l, 0)$
for some	$B(\hat{x}, R_{\circ})$
$0 < r < l \leq R_0 := \frac{-}{\max C}$	
and $\underline{m_1 = -M_2}$. \Rightarrow Inactive pair $\begin{pmatrix} * & * & * \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	$\beta(\hat{\tilde{z}}, R_{o})$
Assume that \rightarrow intertere $(\mp : \neq)$	
Ω n a domain like the picture.	. .
Then, uie bounded. In particular, Sc	= 0.

o When $C(x) \equiv C \in (0, N)$, this result is announced Remark by Ohtsuka (2013, Oberwolfach report) Cabrera-Frank (1951) o Burton-0 9.1. Topological considerations We now consider the interactions between the growth spirals centred on different dislocations. We have already considered the case of a pair of opposite sign, and seen that if they are closer together than a critical distance $(2\rho_c)$ in the simple case) no growth occurs, while if they are further apart than this they send out successive closed loops of steps. It is obvious that if there are two such pairs these loops unite on meeting, and the number of steps) We can expect Sc > O if l in large enough, and This is still OPEN (Numerically, see Ohtsulca - Tsai - Giga (2015)) Also, BCF gives an interesting observation

0 Assume N=2, $\alpha_1 = (l, 0), \alpha_2 = (-l, 0),$ $M_1 = M_2 = 1$. $= \frac{1}{4} \left(\frac{1}{4} + \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4$ (F_{1}, F_{2}) In this setting, intuitively it seems that two spirals accelqte. However, even to prove Sc >0 n hard (DPEN) => Find a good barrier function (subsd) from below. L Hand I

Thm 4. Assume (AI), (A2) hold, and Sc=0 Then, $\exists v \in Lip(\overline{\Omega}) \text{ s.t. } U(\cdot, t) \rightarrow v \text{ in } C(\overline{W})$ as $t \rightarrow t \otimes$, $\int -\left(\operatorname{div} \left(\frac{D(v-\theta)}{|D(v-\theta)|} \right) + C(\pi) \right) |D(v-\theta)| = 0 \quad \text{in } W$ where $p(v-\theta) \cdot m = 0$ on gM Rem. When Sc70, the large time behavior for (N) à rather open.

Example (Special Sol)
$N=1, M_{1}=1, A_{1}=0, W=B(0,R) \setminus B(0,r), C(x)= x $
Assume $U_0(\pi) = g\left(\frac{\pi}{ \pi }\right)$ for some $g \in C^2(\mathbb{R}^2)$
Then, $U(x,t) = g\left(\mathcal{R}_{-t} \frac{\mathcal{X}}{ x }\right) + t$ $\int_{\mathcal{T}} \Psi(x,t) \in W \times [0,M]$
where
$R_{r} = \begin{pmatrix} cosr - sinr \\ sinr cosr \end{pmatrix}$
<u>Rem</u> Note that $U(x,t) - t$ does NOT converge as $t \rightarrow t$. This is a new type of special solution associated with (N) as for as I thow.

Thanks for your attention 1