Numerical surgery for mean curvature flow of surfaces

"What happens when we let a numerical analyst to the operating table?"

> Balázs Kovács Paderborn University

The 81st Fujihara Seminar

Mathematical Aspects for Interfaces and Free Boundaries

6 June 2024, Niseko, Japan

B. Kovács (Paderborn)

Numerical surgery for MCF

Outline

Motivation

- Theoretical results on MCF with surgery
- A convergent algorithm for MCF
- Surgery

Continuous surgery Numerical surgery

Numerical experiments

Ethical statement

- None of the test subjects were *permanently* harmed during the presented test-operations.
- Viewer discretion is not advised.

Patient – Mean curvature flow

Surface evolution under mean curvature flow:

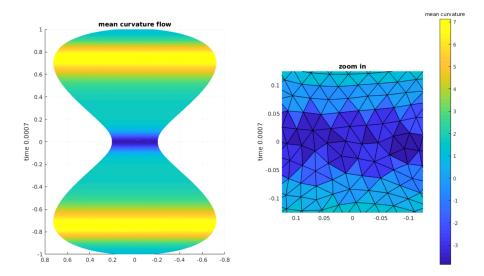
 $\mathbf{v} = -H\nu$,

where *H* is the mean curvature and ν is the outward unit normal field of $\Gamma[X]$.

The flow has nice properties (e.g. maximum principle, avoidance property, etc.). [Huisken (1984)], [...]

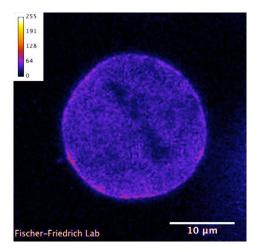
The "heat equation" for surface flows. Singularities occur for $d \ge 2$.

A flow requiring "treatment" – a pinch singularity



A flow requiring "treatment" – a pinch singularity

In reality – cell division by contractile ring formation



Experiment by E. Fischer-Friedrich (TU Dresden & FOR 3013). [Wittwer and Aland (2022)], [Bonati, Wittwer, Aland, and Fischer-Friedrich (2022)]

In reality – cell division by contractile ring formation

Experiment by E. Fischer-Friedrich (TU Dresden & FOR 3013). [Wittwer and Aland (2022)], [Bonati, Wittwer, Aland, and Fischer-Friedrich (2022)] The Cure – Goal of this talk

How can we pass through singularities? We do surgery!

How can we pass through singularities for *parametric methods*? We do surgery!

Ideas are from Ricci flow with surgery:

- Hamilton (1982,1993,1997) Hamilton's programme
- Perelman (2002,2003a,b)

 \rightarrow solving the Poincaré conjecture

The Cure – Goal of this talk

How can we pass through singularities? We do surgery!

How can we pass through singularities for *parametric methods*? We do surgery!

Ideas are from Ricci flow with surgery:

- Hamilton (1982,1993,1997) \leftarrow Hamilton's programme
- Perelman (2002,2003a,b) \longrightarrow solving the Poincaré conjecture

Further literature

Mean curvature flow with surgery

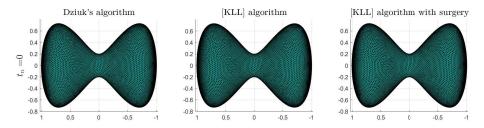
- Huisken and Sinestrari (2009)
- Brendle and Huisken (2016,2018)
- etc.

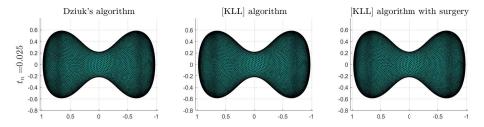
Numerical approaches

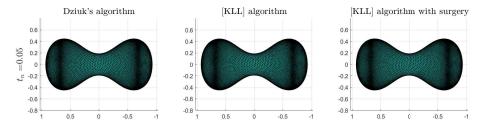
- just compute beyond a singularity (e.g. [Dziuk (1990)])
- Balazovjech, Mikula, Petrášová, and Urbán (2012)
- Benninghoff and Garcke (2014,2016a,b,2017)

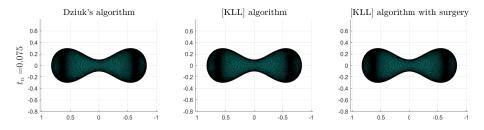
a global approach based on a background grid

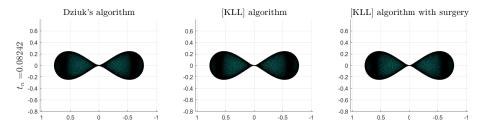
• non-parametric methods (level-set, phase-field, XFEMs, etc.)

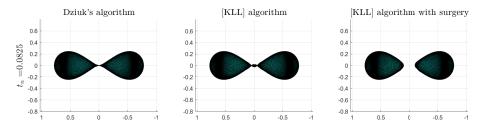


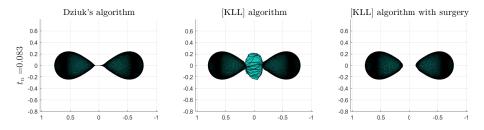


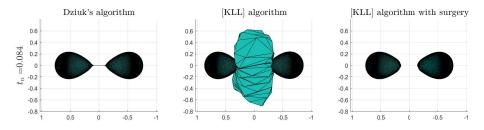


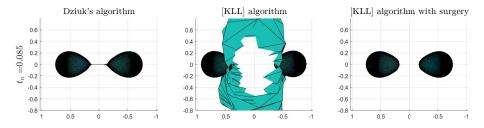


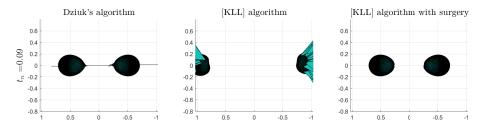


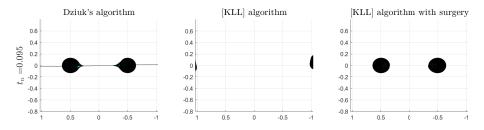












Mean curvature flow with surgery

The three keys

The Huisken–Sinestrari-type MCF with surgery relies on:

- convexity estimate, i.e. regions of high curvature have almost positive definite second fundamental form;
- cylindrical estimate, i.e. for a 2-convex flow, regions of high curvature are either uniformly convex or close to a cylinder;
- gradient estimate, which gives derivative bounds depending only at the curvature at a single point.

[Haslhofer and Kleiner (2017)]

Mean curvature flow with surgery – I.

Algorithm (Mean curvature flow with surgery)

Data: Let $\Gamma^0 \subset \mathbb{R}^{n+1}$ be a closed embedded initial surface. Let the curvature thresholds $H_1 < H_2 < H_3$ be given.

- (a) Let the smooth flow evolve $\Gamma(t)$ until time t such that $\max\{H(\cdot, t)\} > H_3$.
- (b) Perform surgeries on necks, removing all points with curvature greater than H_2 .

Right after surgery, maximal curvature drops below H_2 .

(c) Repeat the Steps (a) and (b) until the flow goes extinct.

[Huisken and Sinestrari (2009)] $(n \ge 3, \kappa_1^0 + \kappa_2^0 \ge 0)$ [Brendle and Huisken (2016)] $(\mathbb{R}^3, H^0 > 0)$

Mean curvature flow with surgery – II.

Theorem [Brendle and Huisken (2016)]

Let Γ^0 be a closed, embedded surface in \mathbb{R}^3 , with positive mean curvature. Then there exists a mean curvature flow with surgeries starting from Γ^0 which terminates after finitely many steps.

Challenges:

- Step (b) "perform surgeries on necks": how? scaling? key technique: α-noncollapsedness (R_{in}(x) ≥ α/H(x)) key issue: max{H} ≤ H₂ except on the regions diffeomorphic to a sphere, or a "neck"
- send the curvature thresholds $H_1 < H_2 < H_3$ to infinity, the flow with surgery converges to the level set solution

Mean curvature flow with surgery – II.

Theorem [Brendle and Huisken (2016)]

Let Γ^0 be a closed, embedded surface in \mathbb{R}^3 , with positive mean curvature. Then there exists a mean curvature flow with surgeries starting from Γ^0 which terminates after finitely many steps.

Challenges:

- Step (b) "perform surgeries on necks": how? scaling? key technique: α-noncollapsedness (R_{in}(x) ≥ α/H(x)) key issue: max{H} ≤ H₂ except on the regions diffeomorphic to a sphere, or a "neck"
- send the curvature thresholds $H_1 < H_2 < H_3$ to infinity, the flow with surgery converges to the level set solution

A convergent algorithm for mean curvature flow with numerical surgery

The analysts' approach

A regular surface $\Gamma[X]$ moving under mean curvature flow satisfies the coupled system:

 $v = -H\nu,$ $\partial^{\bullet}\nu = \Delta_{\Gamma[X]}\nu + |\nabla_{\Gamma[X]}\nu|^{2}\nu,$ $\partial^{\bullet}H = \Delta_{\Gamma[X]}H + |\nabla_{\Gamma[X]}\nu|^{2}H,$ $\partial_{t}X = v.$

[Huisken (1984)]

[K., Li and Lubich (2019)]: Numerical algorithm based on this coupled system.

Discrete mean curvature flow with surgery

Algorithm (Fully discrete mean curvature flow with surgery)

Data: Let Γ_h^0 be the discretised initial surface, with curvature H_h^0 and normal vector field ν_h^0 . Let the curvature thresholds $H_3 > H_2$ be given.

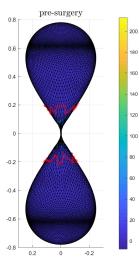
- (a) Let the fully discrete algorithm [KLL] evolve $\Gamma_h[\mathbf{x}^n]$, H_h^n , and ν_h^n until time t_n such that $\max\{H_h^n\} > H_3$.
- (b) Perform surgeries on $\Gamma_h[\mathbf{x}^n]$, removing all nodes for which $H_h^n(\mathbf{x}_j^n) > H_2$.

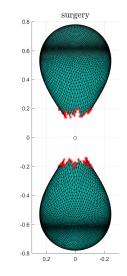
Right after surgery maximal curvature drops to H_2 .

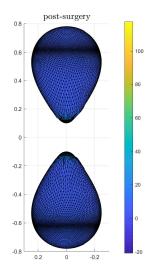
(c) Repeat the Steps (a) and (b) until the discrete flow goes extinct.

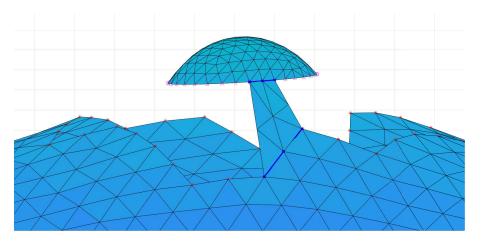
Step (b) is technical (removing elements, computing new geometry, etc.).

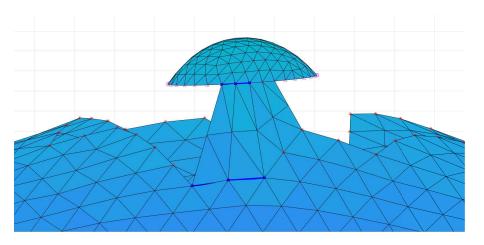
Step (b) – sketch

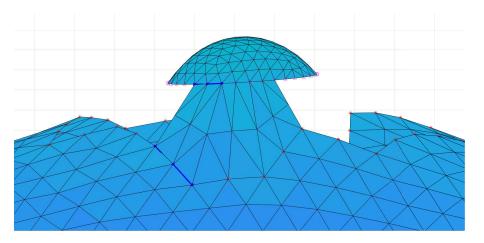


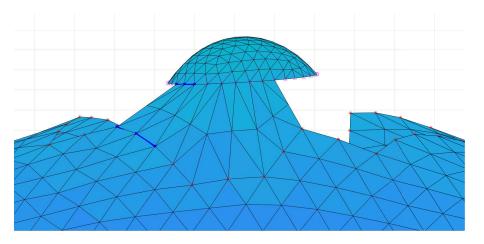


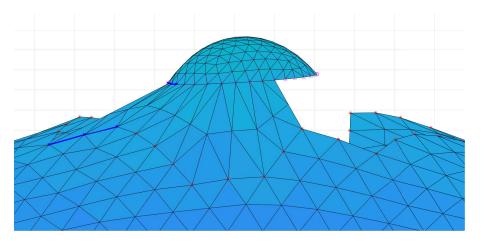


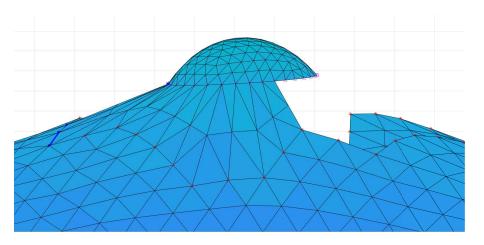




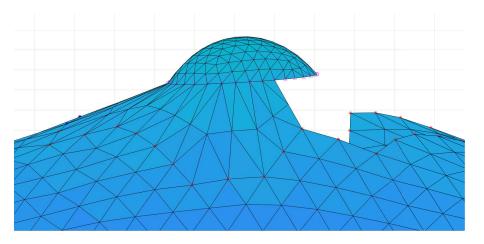




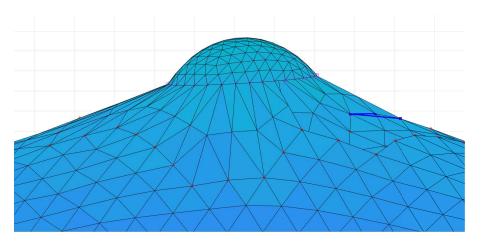




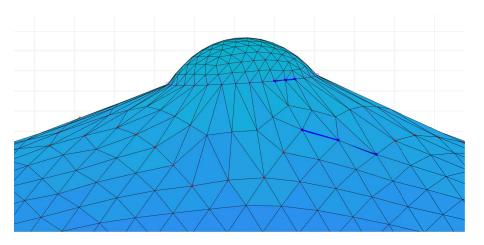
Step (b) – sewing



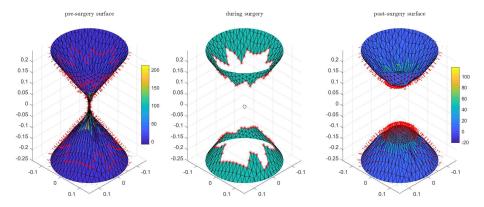
Step (b) – sewing



Step (b) – sewing

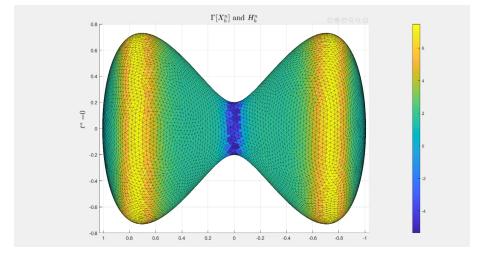


Step (b) – sketch (zoom-in)



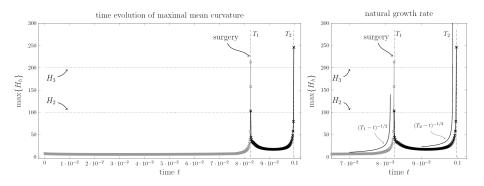
Numerical experiments

Test-surgery I.

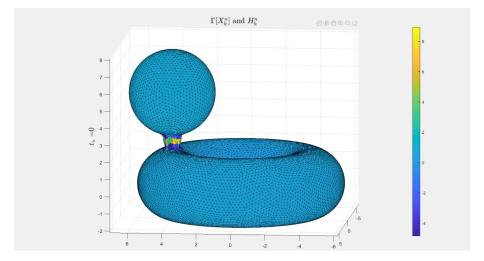


Test-surgery I.

Time evolution and scaling of $\max\{H_h^n\}$



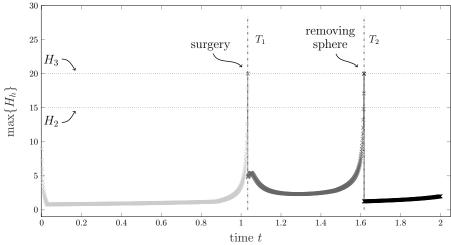
Test-surgery II.

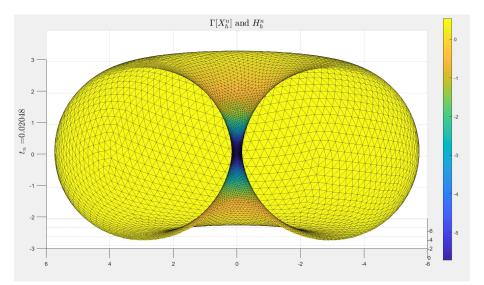


Test-surgery II.

Time evolution of $\max\{H_h^n\}$

time evolution of maximal mean curvature





Thank you for your attention!

B. Kovács (Paderborn)