On a new narrow band level set method

Arnold Reusken

Chair for Numerical Mathematics RWTH Aachen University

Fujihara seminar, June 5th, 2024

Joint work with Maxim Olshanskii (Houston), Paul Schwering (RWTH)

<u>igpm</u>∧_

Level set method in analysis

Evolution of initial surface $\Gamma_0 \subset \mathbb{R}^3$ that evolves with normal velocity V_N ? Use $\phi(\cdot, t) : \mathbb{R}^3 \to \mathbb{R}$ with level sets $\Gamma_c(t) := \{ x \mid \phi(x, t) = c \}$. Initialization: $\phi(\cdot, 0) \sim$ signed distance to Γ_0 .

Key principle:

all level sets Γ_c of ϕ evolve with their normal velocity $V_N = V_N(\Gamma_c)$.

Level set method in analysis

Evolution of initial surface $\Gamma_0 \subset \mathbb{R}^3$ that evolves with normal velocity V_N ? Use $\phi(\cdot, t) : \mathbb{R}^3 \to \mathbb{R}$ with level sets $\Gamma_c(t) := \{ x \mid \phi(x, t) = c \}$. Initialization: $\phi(\cdot, 0) \sim$ signed distance to Γ_0 . Key principle:

all level sets Γ_c of ϕ evolve with their normal velocity $V_N = V_N(\Gamma_c)$.

This leads to

Level set equation

$$rac{\partial \phi}{\partial t} + V_{\mathcal{N}} |
abla \phi| = 0 \quad ext{in} \quad \Omega \subset \mathbb{R}^3, \ t \geq 0$$

Level set method in analysis

Evolution of initial surface $\Gamma_0 \subset \mathbb{R}^3$ that evolves with normal velocity V_N ? Use $\phi(\cdot, t) : \mathbb{R}^3 \to \mathbb{R}$ with level sets $\Gamma_c(t) := \{ x \mid \phi(x, t) = c \}$. Initialization: $\phi(\cdot, 0) \sim$ signed distance to Γ_0 .

Key principle:

all level sets Γ_c of ϕ evolve with their normal velocity $V_N = V_N(\Gamma_c)$.

This leads to

Level set equation

$$rac{\partial \phi}{\partial t} + V_N |
abla \phi| = 0 \quad ext{in} \quad \Omega \subset \mathbb{R}^3, \ t \geq 0$$

Example: mean curvature flow

Normal velocity
$$V_N = -\text{mean curvature} = -\kappa$$

Using
$$\kappa = \operatorname{div}(\mathbf{n}) = \operatorname{div}(rac{
abla \phi}{|
abla \phi|})$$
 one obtains

$$rac{\partial \phi}{\partial t} - |
abla \phi| {
m div}(rac{
abla \phi}{|
abla \phi|}) = 0 \quad {
m in} \ \ \Omega \subset \mathbb{R}^3, \ t \geq 0$$

Using
$$\kappa = \operatorname{div}(\mathbf{n}) = \operatorname{div}(rac{
abla \phi}{|
abla \phi|})$$
 one obtains

$$rac{\partial \phi}{\partial t} - |
abla \phi| {
m div}(rac{
abla \phi}{|
abla \phi|}) = 0 \quad {
m in} \ \ \Omega \subset \mathbb{R}^3, \ t \geq 0$$

Strongly degenerate nonlinear parabolic PDE.

Analysis: well-posedness?

Using
$$\kappa = \operatorname{div}(\mathbf{n}) = \operatorname{div}(rac{
abla \phi}{|
abla \phi|})$$
 one obtains

$$rac{\partial \phi}{\partial t} - |
abla \phi| {
m div}(rac{
abla \phi}{|
abla \phi|}) = 0 \quad {
m in} \ \ \Omega \subset \mathbb{R}^3, \ t \geq 0$$

Strongly degenerate nonlinear parabolic PDE.

Analysis: well-posedness?

The notion of viscosity solutions fits well: There exists a unique global-in-time viscosity solution ϕ for suitable $\phi(\cdot, 0)$.

Weak notion can handle singularities.

Implict surface evolution: $\Gamma_0(t) = \{ \phi(\cdot, t) = 0 \}$ ("fattening")

Using
$$\kappa = \operatorname{div}(\mathbf{n}) = \operatorname{div}(rac{
abla \phi}{|
abla \phi|})$$
 one obtains

$$rac{\partial \phi}{\partial t} - |
abla \phi| {
m div}(rac{
abla \phi}{|
abla \phi|}) = 0 \quad {
m in} \ \ \Omega \subset \mathbb{R}^3, \ t \geq 0$$

Strongly degenerate nonlinear parabolic PDE.

Analysis: well-posedness?

The notion of viscosity solutions fits well: There exists a unique global-in-time viscosity solution ϕ for suitable $\phi(\cdot, 0)$.

Weak notion can handle singularities.

Implict surface evolution: $\Gamma_0(t) = \{ \phi(\cdot, t) = 0 \}$ ("fattening")

Extensive work in literature on analysis of PDEs:

[Chen, Giga, Evans, Spruck, 1991]

[Y. Giga, Surface Evolution Equations: A Level Set Approach (2006)]

[X. Bian, Y. Giga, and H. Mitake, A level-set method for a mean curvature flow with a prescribed boundary, Preprint (2023)]

.....many more.....

Reusken (RWTH Aachen)

Level set method in numerics

Many applications, cf. [//math.berkeley.edu/sethian/], talk of J. Sethian

Level set method in numerics

Many applications, cf. [//math.berkeley.edu/sethian/], talk of J. Sethian

One example: Two-phase incompressible flows (cf. talk of H. Garcke)

Interface: $\Gamma(t) = \partial \Omega_1 \cap \partial \Omega_2$ $\mathbf{D}(\mathbf{u}) = \nabla \mathbf{u} + \nabla \mathbf{u}^T, \ \sigma = -\rho \mathbf{I} + \mu \mathbf{D}(\mathbf{u})$ κ : curvature

 τ : surface tension coefficient

Level set method in numerics

Many applications, cf. [//math.berkeley.edu/sethian/], talk of J. Sethian

One example: Two-phase incompressible flows (cf. talk of H. Garcke)

Interface: $\Gamma(t) = \partial \Omega_1 \cap \partial \Omega_2$ $\mathbf{D}(\mathbf{u}) = \nabla \mathbf{u} + \nabla \mathbf{u}^T, \ \sigma = -p \mathbf{I} + \mu \mathbf{D}(\mathbf{u})$ κ : curvature

 τ : surface tension coefficient

Coupled Navier-Stokes equations

$$\begin{cases} \rho_i(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) = -\nabla \rho + \operatorname{div}(\mu_i \mathbf{D}(\mathbf{u})) + \rho_i \mathbf{g} & \text{in } \Omega_i \\ \operatorname{div} \mathbf{u} = 0 & \text{in } \Omega_i \end{cases} \quad \text{for } i = 1, 2 \end{cases}$$

 $[\sigma \mathbf{n}]_{\Gamma} = \tau \kappa \mathbf{n} \quad (\text{surface tension}), \quad [\mathbf{u}]_{\Gamma} = \mathbf{0} \ , \ V_N = \mathbf{u} \cdot \mathbf{n}.$

 $\Gamma(t) = ext{zero-level of } arphi(x,t)$ $\int < 0 \quad ext{for } x ext{ in phase } \Omega_1$

$$\varphi(x,t) = \begin{cases} > 0 & \text{for } x \text{ in phase } \Omega_2 \\ = 0 & \text{at the interface} \end{cases}$$

 $\Gamma(t) = \text{zero-level of } \varphi(x, t)$ $\varphi(x, t) = \begin{cases} < 0 & \text{for } x \text{ in phase } \Omega_1 \\ > 0 & \text{for } x \text{ in phase } \Omega_2 \\ = 0 & \text{at the interface} \end{cases}$

Navier-Stokes equations coupled with level set equation

$$\rho(\varphi) \left(\mathbf{u}_t + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \operatorname{div} \left(\mu(\varphi) \mathbf{D}(\mathbf{u}) \right) + \nabla p = \rho(\varphi) g - \tau \kappa(\varphi) \delta_{\Gamma} \mathbf{n}_{\Gamma}$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\varphi_t + \mathbf{u} \cdot \nabla \varphi = 0$$

 $\Gamma(t) = \text{zero-level of } \varphi(x, t)$ $\varphi(x, t) = \begin{cases} < 0 & \text{for } x \text{ in phase } \Omega_1 \\ > 0 & \text{for } x \text{ in phase } \Omega_2 \\ = 0 & \text{at the interface} \end{cases}$

Navier-Stokes equations coupled with level set equation

$$\rho(\varphi) \left(\mathbf{u}_t + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \operatorname{div} \left(\mu(\varphi) \mathbf{D}(\mathbf{u}) \right) + \nabla p = \rho(\varphi) g - \tau \kappa(\varphi) \delta_{\Gamma} \mathbf{n}_{\Gamma}$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\varphi_t + \mathbf{u} \cdot \nabla \varphi = 0$$

Method can deal with droplet merging/splitting.

Note: **u** globally defined.

Reusken (RWTH Aachen)

An example (our motivation): surface Navier-Stokes equations:

$$\begin{cases} \rho \dot{\mathbf{u}} = -\nabla_{\Gamma} \boldsymbol{p} + 2\mu \operatorname{div}_{\Gamma}(\boldsymbol{E}_{s}(\mathbf{u})) + \mathbf{b} + \boldsymbol{p}\kappa \mathbf{n} \\ \operatorname{div}_{\Gamma} \mathbf{u} = 0 \end{cases} \quad \text{on } \Gamma(t),$$

Geometric evolution of $\Gamma(t)$ is defined by

$$\mathbf{u}_N = (\mathbf{u} \cdot \mathbf{n})\mathbf{n}, \quad \partial_t X = \mathbf{u}_N \circ X; \qquad X(\cdot, t)$$
: parametrization of $\Gamma(t)$

An example (our motivation): surface Navier-Stokes equations:

$$\begin{cases} \rho \dot{\mathbf{u}} = -\nabla_{\Gamma} \boldsymbol{p} + 2\mu \operatorname{div}_{\Gamma}(\boldsymbol{E}_{s}(\mathbf{u})) + \mathbf{b} + \boldsymbol{p}\kappa \mathbf{n} \\ \operatorname{div}_{\Gamma} \mathbf{u} = 0 \end{cases} \quad \text{on } \Gamma(t),$$

Geometric evolution of $\Gamma(t)$ is defined by

$$\mathbf{u}_N = (\mathbf{u} \cdot \mathbf{n})\mathbf{n}, \quad \partial_t X = \mathbf{u}_N \circ X; \qquad X(\cdot, t)$$
 : parametrization of $\Gamma(t)$

Here: (normal) velocity \mathbf{u}_N defined only $\Gamma(t)$.

An example (our motivation): surface Navier-Stokes equations:

$$\begin{cases} \rho \dot{\mathbf{u}} = -\nabla_{\Gamma} p + 2\mu \operatorname{div}_{\Gamma}(E_{s}(\mathbf{u})) + \mathbf{b} + p\kappa \mathbf{n} \\ \operatorname{div}_{\Gamma} \mathbf{u} = 0 \end{cases} \quad \text{on } \Gamma(t),$$

Geometric evolution of $\Gamma(t)$ is defined by

$$\mathbf{u}_N = (\mathbf{u} \cdot \mathbf{n})\mathbf{n}, \quad \partial_t X = \mathbf{u}_N \circ X; \qquad X(\cdot, t)$$
: parametrization of $\Gamma(t)$

Here: (normal) velocity \mathbf{u}_N defined only $\Gamma(t)$.

Other example: Mean curvature coupled with surface diffusion, cf. [Elliott, Garcke, Kovacs, Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces (2022)]

An example (our motivation): surface Navier-Stokes equations:

$$\begin{cases} \rho \dot{\mathbf{u}} = -\nabla_{\Gamma} \rho + 2\mu \operatorname{div}_{\Gamma}(E_{s}(\mathbf{u})) + \mathbf{b} + \rho \kappa \mathbf{n} \\ \operatorname{div}_{\Gamma} \mathbf{u} = \mathbf{0} \end{cases} \quad \text{on } \Gamma(t),$$

Geometric evolution of $\Gamma(t)$ is defined by

 $\mathbf{u}_N = (\mathbf{u} \cdot \mathbf{n})\mathbf{n}, \quad \partial_t X = \mathbf{u}_N \circ X; \qquad X(\cdot, t)$: parametrization of $\Gamma(t)$

Here: (normal) velocity \mathbf{u}_N defined only $\Gamma(t)$.

Other example: Mean curvature coupled with surface diffusion, cf. [Elliott,Garcke,Kovacs, Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces (2022)] In numerics: Lagrangian or Eulerian approach. Lagrangian approach: cf. talks of C. Elliott, H. Garcke. Eulerian approach → narrow band level set method

Narrow band level set method

Assumption:

 \mathbf{u}_N extended to neighbourhood of $\Gamma(t)$.

Evolving narrow band:

$$\Omega_\epsilon(t) := \{ \, x \in \mathbb{R}^d \mid |\phi(x,t)| < \epsilon \, \}$$

Time stepping on narrow band Ω_{Γ}^{n} .

Narrow band level set method

Assumption:

 \mathbf{u}_N extended to neighbourhood of $\Gamma(t)$.

Evolving narrow band:

 $\Omega_{\epsilon}(t) := \{ x \in \mathbb{R}^d \mid |\phi(x,t)| < \epsilon \}$

Time stepping on narrow band Ω_{Γ}^n .

Structure of narrow band algorithm

- a) Given ϕ_h^n specify boundary conditions ϕ_D^n on inflow boundary of Ω_{Γ}^n .
- b) Given ϕ_h^n and boundary data ϕ_D^n : solve LS equation approximately on $\Omega_{\Gamma}^n \times [t_n, t_{n+1}]$ (we use DG FEM). Result $\tilde{\phi}_h^{n+1}$.

c) Find ϕ_h^{n+1} as an extension of $\tilde{\phi}_h^{n+1}$ from Ω_{Γ}^n to Ω_{Γ}^{n+1} .

\Rightarrow an extension procedure is needed.

Known techniques: re-initialization

- Fast marching method (FMM, [Sethian, 1996])
- PDE based: solve Eikonal equation locally
-

Known techniques: re-initialization

- Fast marching method (FMM, [Sethian, 1996])
- PDE based: solve Eikonal equation locally

•

We propose another, finite element based approach:

use the Ghost penalty (GP) technique [Burman et al.]

GP: has several applications as stabilization technique in FEM .

Known techniques: re-initialization

- Fast marching method (FMM, [Sethian, 1996])
- PDE based: solve Eikonal equation locally

•

We propose another, finite element based approach:

use the Ghost penalty (GP) technique [Burman et al.]

GP: has several applications as stabilization technique in FEM .

We propose to use it as extension method.

Given Ω_h and extended domain Ω_h^{ex} . GP faces: $\mathcal{F}_h^{\text{GP}}$ $\omega(F) = T_1 \cup T_2$ for $F \in \mathcal{F}_h^{\text{GP}}$ V_h : continuous FE of degree k.

 $\psi \in V_h$: $\psi_i = \mathcal{E}^{\mathcal{P}}(\psi_{|T_i})$ (polynomial extension).

Given Ω_h and extended domain Ω_h^{ex} . GP faces: $\mathcal{F}_h^{\text{GP}}$ $\omega(F) = T_1 \cup T_2$ for $F \in \mathcal{F}_h^{\text{GP}}$ V_h : continuous FE of degree k.

 $\psi \in V_h$: $\psi_i = \mathcal{E}^P(\psi_{|T_i})$ (polynomial extension).

GP bilinear form ("volumetric jump" formulation [J. Preuss, 2018])

$$s_h(\phi,\psi) := \gamma \sum_{F \in \mathcal{F}_h^{\mathrm{GP}}} \int_{\omega(F)} (\phi_1 - \phi_2) (\psi_1 - \psi_2) \, dx, \quad \text{for } \phi, \psi \in V_h(\Omega_h^{\mathrm{ex}}),$$

with parameter $\gamma > 0$.

Reusken (RWTH Aachen)

 $(\phi,\psi)_{\omega} := (\phi,\psi)_{L^2(\omega)}$

GP extension bilinear form

For a given function $\tilde{\phi} \in L^2(\Omega_h)$, determine $\phi_h \in V_h(\Omega_h^{ex})$ such that $a_h^{\text{ext}}(\phi_h, \psi_h) := (\phi_h, \psi_h)_{\Omega_h} + s_h(\phi_h, \psi_h) = (\tilde{\phi}, \psi_h)_{\Omega_h}$ for all $\psi_h \in V_h(\Omega_h^{ex})$

 $(\phi,\psi)_{\omega} := (\phi,\psi)_{L^2(\omega)}$

GP extension bilinear form

For a given function $\tilde{\phi} \in L^2(\Omega_h)$, determine $\phi_h \in V_h(\Omega_h^{ex})$ such that $a_h^{\text{ext}}(\phi_h, \psi_h) := (\phi_h, \psi_h)_{\Omega_h} + s_h(\phi_h, \psi_h) = (\tilde{\phi}, \psi_h)_{\Omega_h}$ for all $\psi_h \in V_h(\Omega_h^{ex})$

 $(\phi,\psi)_{\omega} := (\phi,\psi)_{L^2(\omega)}$

GP extension bilinear form

For a given function $\tilde{\phi} \in L^2(\Omega_h)$, determine $\phi_h \in V_h(\Omega_h^{ex})$ such that $a_h^{\text{ext}}(\phi_h, \psi_h) := (\phi_h, \psi_h)_{\Omega_h} + s_h(\phi_h, \psi_h) = (\tilde{\phi}, \psi_h)_{\Omega_h}$ for all $\psi_h \in V_h(\Omega_h^{ex})$

Note: instead of $(\phi_h, \psi_h)_{\Omega_h}$ also $(\phi_h, \psi_h)_{H^1(\Omega_h)}$ can be used.

Reusken (RWTH Aachen)

Assumption: Ω_h may be of width $\sim h$; $\Omega_h^{\text{ex}} \setminus \Omega_h$ must be of width $\sim h$. We assume a $\phi \in H^{k+1}(\Omega_h^{\text{ex}})$, and $\tilde{\phi} \approx \phi$ on Ω_h .

Assumption: Ω_h may be of width $\sim h$; $\Omega_h^{\text{ex}} \setminus \Omega_h$ must be of width $\sim h$. We assume a $\phi \in H^{k+1}(\Omega_h^{\text{ex}})$, and $\tilde{\phi} \approx \phi$ on Ω_h .

Stability and error bounds

$$\|\psi_h\|_{\Omega_h^{ ext{ex}}}^2 \leq c \, a_h^{ ext{ext}}(\psi_h,\psi_h) \quad ext{for all} \quad \psi_h \in V_h(\Omega_h^{ ext{ext{ext}}})$$

Assumption: Ω_h may be of width $\sim h$; $\Omega_h^{\text{ex}} \setminus \Omega_h$ must be of width $\sim h$. We assume a $\phi \in H^{k+1}(\Omega_h^{\text{ex}})$, and $\tilde{\phi} \approx \phi$ on Ω_h .

Stability and error bounds

$$\|\psi_h\|_{\Omega_h^{\mathrm{ex}}}^2 \leq c \, a_h^{\mathrm{ext}}(\psi_h,\psi_h) \quad \text{for all} \quad \psi_h \in V_h(\Omega_h^{\mathrm{ex}})$$

Let $\phi_h \in V_h(\Omega_h^{ex})$ the solution of extension problem with data $\tilde{\phi} \in L^2(\Omega_h)$.

$$\|\phi-\phi_h\|_{\Omega_h^{ ext{ex}}} \leq c(\|\phi- ilde{\phi}\|_{\Omega_h}+h^{k+1}\|\phi\|_{H^{k+1}(\Omega_h^{ ext{ex}})})$$

Assumption: Ω_h may be of width $\sim h$; $\Omega_h^{\text{ex}} \setminus \Omega_h$ must be of width $\sim h$. We assume a $\phi \in H^{k+1}(\Omega_h^{\text{ex}})$, and $\tilde{\phi} \approx \phi$ on Ω_h .

Stability and error bounds

$$\|\psi_h\|_{\Omega_h^{\mathrm{ex}}}^2 \leq c \, a_h^{\mathrm{ext}}(\psi_h,\psi_h) \quad \text{for all} \quad \psi_h \in V_h(\Omega_h^{\mathrm{ex}})$$

Let $\phi_h \in V_h(\Omega_h^{ex})$ the solution of extension problem with data $\tilde{\phi} \in L^2(\Omega_h)$.

$$\|\phi-\phi_h\|_{\Omega_h^{ ext{ex}}} \leq \mathsf{c}(\|\phi- ilde{\phi}\|_{\Omega_h}+h^{k+1}\|\phi\|_{H^{k+1}(\Omega_h^{ ext{ex}})})$$

- General numerical extension operator
- Optimal error bound
- Still open: error bound for whole narrow band discretization method

Numerical experiment for extension method

"Kite" level set function $\phi(\mathbf{x}) = (x_1 - x_3^2)^2 + x_2^2 + x_3^2 - 1$. Zero level:

Numerical experiment for extension method

"Kite" level set function $\phi(\mathbf{x}) = (x_1 - x_3^2)^2 + x_2^2 + x_3^2 - 1$. Zero level:

$$\begin{split} \mathcal{T}_{\Gamma} &: \text{tetrahedra cut by } \Gamma_{h} \text{ (zero level)} \\ \Omega_{h} &:= \mathcal{N}(\mathcal{N}(\mathcal{T}_{\Gamma})) \\ \Omega_{h}^{\text{ext}} &:= \mathcal{N}(\mathcal{N}(\Omega_{h})) \text{ (two additional layers)} \\ \tilde{\phi} &:= (I_{h}\phi)_{|\Omega_{h}} \text{ (input for extension problem)} \end{split}$$

Error measures:

k = 4: $\phi_h = \phi$.

Numerical experiment for narrow band level set method

Kite to sphere level set function $\phi(x, t)$.

Numerical experiment for narrow band level set method

Kite to sphere level set function $\phi(x, t)$.

On $\Omega_h^n \times [t_n, t_{n+1}]$: Inflow boundary data: $(\phi_h^n)_{|\text{boundary}}$ Spatial discretization: DG FEM, degree k = 1.

Time discretization: BDF2, $\Delta t \sim h$.

Numerical experiment for narrow band level set method

Kite to sphere level set function $\phi(x, t)$.

On $\Omega_h^n \times [t_n, t_{n+1}]$: Inflow boundary data: $(\phi_h^n)_{|\text{boundary}}$ Spatial discretization: DG FEM, degree k = 1. Time discretization: BDF2, $\Delta t \sim h$. In extension: k = 1 $\Omega_{\text{proj}} :=$ smallest set of T that contains $|\phi_h^n| \leq h$. $\Omega_h^{\text{ext}} := \Omega_h^{n+1}$. Error measures:

Error measures:

For (close to) singular or nonsmooth geometries: combination with robust re-initialization techniques.

- New extension method based on Ghost penalty technique
- Suitable for combination with FE discretization methods
- Error analysis is available. Higher order straightforward.
- Used as component in narrow band level set method
- Reference: preprint soon available in arXiv